This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction <. H , Q >. of a trail <. F , P >. to an initial segment of the trail (of length N ) forms a trail on the subgraph S consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlres.v | |- V = ( Vtx ` G ) |
|
| trlres.i | |- I = ( iEdg ` G ) |
||
| trlres.d | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlres.h | |- H = ( F prefix N ) |
||
| trlres.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| trlres.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlres.q | |- Q = ( P |` ( 0 ... N ) ) |
||
| Assertion | trlres | |- ( ph -> H ( Trails ` S ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.v | |- V = ( Vtx ` G ) |
|
| 2 | trlres.i | |- I = ( iEdg ` G ) |
|
| 3 | trlres.d | |- ( ph -> F ( Trails ` G ) P ) |
|
| 4 | trlres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlres.h | |- H = ( F prefix N ) |
|
| 6 | trlres.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 7 | trlres.e | |- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 8 | trlres.q | |- Q = ( P |` ( 0 ... N ) ) |
|
| 9 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 10 | 3 9 | syl | |- ( ph -> F ( Walks ` G ) P ) |
| 11 | 1 2 10 4 6 7 5 8 | wlkres | |- ( ph -> H ( Walks ` S ) Q ) |
| 12 | 1 2 3 4 5 | trlreslem | |- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 13 | f1of1 | |- ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 14 | df-f1 | |- ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( H : ( 0 ..^ ( # ` H ) ) --> dom ( I |` ( F " ( 0 ..^ N ) ) ) /\ Fun `' H ) ) |
|
| 15 | 14 | simprbi | |- ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> Fun `' H ) |
| 16 | 12 13 15 | 3syl | |- ( ph -> Fun `' H ) |
| 17 | istrl | |- ( H ( Trails ` S ) Q <-> ( H ( Walks ` S ) Q /\ Fun `' H ) ) |
|
| 18 | 11 16 17 | sylanbrc | |- ( ph -> H ( Trails ` S ) Q ) |