This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of the group identity is one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | od1.1 | |- O = ( od ` G ) |
|
| od1.2 | |- .0. = ( 0g ` G ) |
||
| Assertion | od1 | |- ( G e. Grp -> ( O ` .0. ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | od1.1 | |- O = ( od ` G ) |
|
| 2 | od1.2 | |- .0. = ( 0g ` G ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 3 2 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 5 | 1nn | |- 1 e. NN |
|
| 6 | 5 | a1i | |- ( G e. Grp -> 1 e. NN ) |
| 7 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 8 | 3 7 | mulg1 | |- ( .0. e. ( Base ` G ) -> ( 1 ( .g ` G ) .0. ) = .0. ) |
| 9 | 4 8 | syl | |- ( G e. Grp -> ( 1 ( .g ` G ) .0. ) = .0. ) |
| 10 | 3 1 7 2 | odlem2 | |- ( ( .0. e. ( Base ` G ) /\ 1 e. NN /\ ( 1 ( .g ` G ) .0. ) = .0. ) -> ( O ` .0. ) e. ( 1 ... 1 ) ) |
| 11 | 4 6 9 10 | syl3anc | |- ( G e. Grp -> ( O ` .0. ) e. ( 1 ... 1 ) ) |
| 12 | elfz1eq | |- ( ( O ` .0. ) e. ( 1 ... 1 ) -> ( O ` .0. ) = 1 ) |
|
| 13 | 11 12 | syl | |- ( G e. Grp -> ( O ` .0. ) = 1 ) |