This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value F generates a metric defined by d ( x , y ) = F ( x - y ) , analogously to cnmet . (In fact, the ring structure is not needed at all; the group properties abveq0 and abvtri , abvneg are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvmet.x | |- X = ( Base ` R ) |
|
| abvmet.a | |- A = ( AbsVal ` R ) |
||
| abvmet.m | |- .- = ( -g ` R ) |
||
| Assertion | abvmet | |- ( F e. A -> ( F o. .- ) e. ( Met ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvmet.x | |- X = ( Base ` R ) |
|
| 2 | abvmet.a | |- A = ( AbsVal ` R ) |
|
| 3 | abvmet.m | |- .- = ( -g ` R ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | 2 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 6 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 7 | 5 6 | syl | |- ( F e. A -> R e. Grp ) |
| 8 | 2 1 | abvf | |- ( F e. A -> F : X --> RR ) |
| 9 | 2 1 4 | abveq0 | |- ( ( F e. A /\ x e. X ) -> ( ( F ` x ) = 0 <-> x = ( 0g ` R ) ) ) |
| 10 | 2 1 3 | abvsubtri | |- ( ( F e. A /\ x e. X /\ y e. X ) -> ( F ` ( x .- y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 11 | 10 | 3expb | |- ( ( F e. A /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .- y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) |
| 12 | 1 3 4 7 8 9 11 | nrmmetd | |- ( F e. A -> ( F o. .- ) e. ( Met ` X ) ) |