This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| tng0.2 | |- .0. = ( 0g ` G ) |
||
| Assertion | tng0 | |- ( N e. V -> .0. = ( 0g ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tng0.2 | |- .0. = ( 0g ` G ) |
|
| 3 | eqidd | |- ( N e. V -> ( Base ` G ) = ( Base ` G ) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 1 4 | tngbas | |- ( N e. V -> ( Base ` G ) = ( Base ` T ) ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 | tngplusg | |- ( N e. V -> ( +g ` G ) = ( +g ` T ) ) |
| 8 | 7 | oveqdr | |- ( ( N e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) |
| 9 | 3 5 8 | grpidpropd | |- ( N e. V -> ( 0g ` G ) = ( 0g ` T ) ) |
| 10 | 2 9 | eqtrid | |- ( N e. V -> .0. = ( 0g ` T ) ) |