This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmfval.n | |- N = ( norm ` W ) |
|
| nmfval.x | |- X = ( Base ` W ) |
||
| nmfval.z | |- .0. = ( 0g ` W ) |
||
| nmfval.d | |- D = ( dist ` W ) |
||
| Assertion | nmfval | |- N = ( x e. X |-> ( x D .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval.n | |- N = ( norm ` W ) |
|
| 2 | nmfval.x | |- X = ( Base ` W ) |
|
| 3 | nmfval.z | |- .0. = ( 0g ` W ) |
|
| 4 | nmfval.d | |- D = ( dist ` W ) |
|
| 5 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( w = W -> ( Base ` w ) = X ) |
| 7 | fveq2 | |- ( w = W -> ( dist ` w ) = ( dist ` W ) ) |
|
| 8 | 7 4 | eqtr4di | |- ( w = W -> ( dist ` w ) = D ) |
| 9 | eqidd | |- ( w = W -> x = x ) |
|
| 10 | fveq2 | |- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( w = W -> ( 0g ` w ) = .0. ) |
| 12 | 8 9 11 | oveq123d | |- ( w = W -> ( x ( dist ` w ) ( 0g ` w ) ) = ( x D .0. ) ) |
| 13 | 6 12 | mpteq12dv | |- ( w = W -> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) = ( x e. X |-> ( x D .0. ) ) ) |
| 14 | df-nm | |- norm = ( w e. _V |-> ( x e. ( Base ` w ) |-> ( x ( dist ` w ) ( 0g ` w ) ) ) ) |
|
| 15 | eqid | |- ( x e. X |-> ( x D .0. ) ) = ( x e. X |-> ( x D .0. ) ) |
|
| 16 | df-ov | |- ( x D .0. ) = ( D ` <. x , .0. >. ) |
|
| 17 | fvrn0 | |- ( D ` <. x , .0. >. ) e. ( ran D u. { (/) } ) |
|
| 18 | 16 17 | eqeltri | |- ( x D .0. ) e. ( ran D u. { (/) } ) |
| 19 | 18 | a1i | |- ( x e. X -> ( x D .0. ) e. ( ran D u. { (/) } ) ) |
| 20 | 15 19 | fmpti | |- ( x e. X |-> ( x D .0. ) ) : X --> ( ran D u. { (/) } ) |
| 21 | 2 | fvexi | |- X e. _V |
| 22 | 4 | fvexi | |- D e. _V |
| 23 | 22 | rnex | |- ran D e. _V |
| 24 | p0ex | |- { (/) } e. _V |
|
| 25 | 23 24 | unex | |- ( ran D u. { (/) } ) e. _V |
| 26 | fex2 | |- ( ( ( x e. X |-> ( x D .0. ) ) : X --> ( ran D u. { (/) } ) /\ X e. _V /\ ( ran D u. { (/) } ) e. _V ) -> ( x e. X |-> ( x D .0. ) ) e. _V ) |
|
| 27 | 20 21 25 26 | mp3an | |- ( x e. X |-> ( x D .0. ) ) e. _V |
| 28 | 13 14 27 | fvmpt | |- ( W e. _V -> ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) ) |
| 29 | fvprc | |- ( -. W e. _V -> ( norm ` W ) = (/) ) |
|
| 30 | mpt0 | |- ( x e. (/) |-> ( x D .0. ) ) = (/) |
|
| 31 | 29 30 | eqtr4di | |- ( -. W e. _V -> ( norm ` W ) = ( x e. (/) |-> ( x D .0. ) ) ) |
| 32 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 33 | 2 32 | eqtrid | |- ( -. W e. _V -> X = (/) ) |
| 34 | 33 | mpteq1d | |- ( -. W e. _V -> ( x e. X |-> ( x D .0. ) ) = ( x e. (/) |-> ( x D .0. ) ) ) |
| 35 | 31 34 | eqtr4d | |- ( -. W e. _V -> ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) ) |
| 36 | 28 35 | pm2.61i | |- ( norm ` W ) = ( x e. X |-> ( x D .0. ) ) |
| 37 | 1 36 | eqtri | |- N = ( x e. X |-> ( x D .0. ) ) |