This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of scalar multiplication; analogue of cnmpt12f which cannot be used directly because .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tlmtrg.f | |- F = ( Scalar ` W ) |
|
| cnmpt1vsca.t | |- .x. = ( .s ` W ) |
||
| cnmpt1vsca.j | |- J = ( TopOpen ` W ) |
||
| cnmpt1vsca.k | |- K = ( TopOpen ` F ) |
||
| cnmpt1vsca.w | |- ( ph -> W e. TopMod ) |
||
| cnmpt1vsca.l | |- ( ph -> L e. ( TopOn ` X ) ) |
||
| cnmpt1vsca.a | |- ( ph -> ( x e. X |-> A ) e. ( L Cn K ) ) |
||
| cnmpt1vsca.b | |- ( ph -> ( x e. X |-> B ) e. ( L Cn J ) ) |
||
| Assertion | cnmpt1vsca | |- ( ph -> ( x e. X |-> ( A .x. B ) ) e. ( L Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | |- F = ( Scalar ` W ) |
|
| 2 | cnmpt1vsca.t | |- .x. = ( .s ` W ) |
|
| 3 | cnmpt1vsca.j | |- J = ( TopOpen ` W ) |
|
| 4 | cnmpt1vsca.k | |- K = ( TopOpen ` F ) |
|
| 5 | cnmpt1vsca.w | |- ( ph -> W e. TopMod ) |
|
| 6 | cnmpt1vsca.l | |- ( ph -> L e. ( TopOn ` X ) ) |
|
| 7 | cnmpt1vsca.a | |- ( ph -> ( x e. X |-> A ) e. ( L Cn K ) ) |
|
| 8 | cnmpt1vsca.b | |- ( ph -> ( x e. X |-> B ) e. ( L Cn J ) ) |
|
| 9 | 1 | tlmscatps | |- ( W e. TopMod -> F e. TopSp ) |
| 10 | 5 9 | syl | |- ( ph -> F e. TopSp ) |
| 11 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 12 | 11 4 | istps | |- ( F e. TopSp <-> K e. ( TopOn ` ( Base ` F ) ) ) |
| 13 | 10 12 | sylib | |- ( ph -> K e. ( TopOn ` ( Base ` F ) ) ) |
| 14 | cnf2 | |- ( ( L e. ( TopOn ` X ) /\ K e. ( TopOn ` ( Base ` F ) ) /\ ( x e. X |-> A ) e. ( L Cn K ) ) -> ( x e. X |-> A ) : X --> ( Base ` F ) ) |
|
| 15 | 6 13 7 14 | syl3anc | |- ( ph -> ( x e. X |-> A ) : X --> ( Base ` F ) ) |
| 16 | 15 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. ( Base ` F ) ) |
| 17 | tlmtps | |- ( W e. TopMod -> W e. TopSp ) |
|
| 18 | 5 17 | syl | |- ( ph -> W e. TopSp ) |
| 19 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 20 | 19 3 | istps | |- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
| 21 | 18 20 | sylib | |- ( ph -> J e. ( TopOn ` ( Base ` W ) ) ) |
| 22 | cnf2 | |- ( ( L e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` W ) ) /\ ( x e. X |-> B ) e. ( L Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
|
| 23 | 6 21 8 22 | syl3anc | |- ( ph -> ( x e. X |-> B ) : X --> ( Base ` W ) ) |
| 24 | 23 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. ( Base ` W ) ) |
| 25 | eqid | |- ( .sf ` W ) = ( .sf ` W ) |
|
| 26 | 19 1 11 25 2 | scafval | |- ( ( A e. ( Base ` F ) /\ B e. ( Base ` W ) ) -> ( A ( .sf ` W ) B ) = ( A .x. B ) ) |
| 27 | 16 24 26 | syl2anc | |- ( ( ph /\ x e. X ) -> ( A ( .sf ` W ) B ) = ( A .x. B ) ) |
| 28 | 27 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A ( .sf ` W ) B ) ) = ( x e. X |-> ( A .x. B ) ) ) |
| 29 | 25 3 1 4 | vscacn | |- ( W e. TopMod -> ( .sf ` W ) e. ( ( K tX J ) Cn J ) ) |
| 30 | 5 29 | syl | |- ( ph -> ( .sf ` W ) e. ( ( K tX J ) Cn J ) ) |
| 31 | 6 7 8 30 | cnmpt12f | |- ( ph -> ( x e. X |-> ( A ( .sf ` W ) B ) ) e. ( L Cn J ) ) |
| 32 | 28 31 | eqeltrrd | |- ( ph -> ( x e. X |-> ( A .x. B ) ) e. ( L Cn J ) ) |