This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tlmlmod | |- ( W e. TopMod -> W e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( .sf ` W ) = ( .sf ` W ) |
|
| 2 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
| 3 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 4 | eqid | |- ( TopOpen ` ( Scalar ` W ) ) = ( TopOpen ` ( Scalar ` W ) ) |
|
| 5 | 1 2 3 4 | istlm | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) /\ ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) ) |
| 6 | 5 | simplbi | |- ( W e. TopMod -> ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) ) |
| 7 | 6 | simp2d | |- ( W e. TopMod -> W e. LMod ) |