This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trin | |- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 2 | trss | |- ( Tr A -> ( x e. A -> x C_ A ) ) |
|
| 3 | trss | |- ( Tr B -> ( x e. B -> x C_ B ) ) |
|
| 4 | 2 3 | im2anan9 | |- ( ( Tr A /\ Tr B ) -> ( ( x e. A /\ x e. B ) -> ( x C_ A /\ x C_ B ) ) ) |
| 5 | 1 4 | biimtrid | |- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> ( x C_ A /\ x C_ B ) ) ) |
| 6 | ssin | |- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
|
| 7 | 5 6 | imbitrdi | |- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> x C_ ( A i^i B ) ) ) |
| 8 | 7 | ralrimiv | |- ( ( Tr A /\ Tr B ) -> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
| 9 | dftr3 | |- ( Tr ( A i^i B ) <-> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |