This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing A as a member, gives almost the same set, except that A itself must be added because it is not usually a member of ( TCA ) (and it is never a member if A is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tc2.1 | |- A e. _V |
|
| Assertion | tc2 | |- ( ( TC ` A ) u. { A } ) = |^| { x | ( A e. x /\ Tr x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tc2.1 | |- A e. _V |
|
| 2 | tcvalg | |- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 3 | 1 2 | ax-mp | |- ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } |
| 4 | trss | |- ( Tr x -> ( A e. x -> A C_ x ) ) |
|
| 5 | 4 | imdistanri | |- ( ( A e. x /\ Tr x ) -> ( A C_ x /\ Tr x ) ) |
| 6 | 5 | ss2abi | |- { x | ( A e. x /\ Tr x ) } C_ { x | ( A C_ x /\ Tr x ) } |
| 7 | intss | |- ( { x | ( A e. x /\ Tr x ) } C_ { x | ( A C_ x /\ Tr x ) } -> |^| { x | ( A C_ x /\ Tr x ) } C_ |^| { x | ( A e. x /\ Tr x ) } ) |
|
| 8 | 6 7 | ax-mp | |- |^| { x | ( A C_ x /\ Tr x ) } C_ |^| { x | ( A e. x /\ Tr x ) } |
| 9 | 3 8 | eqsstri | |- ( TC ` A ) C_ |^| { x | ( A e. x /\ Tr x ) } |
| 10 | 1 | elintab | |- ( A e. |^| { x | ( A e. x /\ Tr x ) } <-> A. x ( ( A e. x /\ Tr x ) -> A e. x ) ) |
| 11 | simpl | |- ( ( A e. x /\ Tr x ) -> A e. x ) |
|
| 12 | 10 11 | mpgbir | |- A e. |^| { x | ( A e. x /\ Tr x ) } |
| 13 | 1 | snss | |- ( A e. |^| { x | ( A e. x /\ Tr x ) } <-> { A } C_ |^| { x | ( A e. x /\ Tr x ) } ) |
| 14 | 12 13 | mpbi | |- { A } C_ |^| { x | ( A e. x /\ Tr x ) } |
| 15 | 9 14 | unssi | |- ( ( TC ` A ) u. { A } ) C_ |^| { x | ( A e. x /\ Tr x ) } |
| 16 | 1 | snid | |- A e. { A } |
| 17 | elun2 | |- ( A e. { A } -> A e. ( ( TC ` A ) u. { A } ) ) |
|
| 18 | 16 17 | ax-mp | |- A e. ( ( TC ` A ) u. { A } ) |
| 19 | uniun | |- U. ( ( TC ` A ) u. { A } ) = ( U. ( TC ` A ) u. U. { A } ) |
|
| 20 | tctr | |- Tr ( TC ` A ) |
|
| 21 | df-tr | |- ( Tr ( TC ` A ) <-> U. ( TC ` A ) C_ ( TC ` A ) ) |
|
| 22 | 20 21 | mpbi | |- U. ( TC ` A ) C_ ( TC ` A ) |
| 23 | 1 | unisn | |- U. { A } = A |
| 24 | tcid | |- ( A e. _V -> A C_ ( TC ` A ) ) |
|
| 25 | 1 24 | ax-mp | |- A C_ ( TC ` A ) |
| 26 | 23 25 | eqsstri | |- U. { A } C_ ( TC ` A ) |
| 27 | 22 26 | unssi | |- ( U. ( TC ` A ) u. U. { A } ) C_ ( TC ` A ) |
| 28 | 19 27 | eqsstri | |- U. ( ( TC ` A ) u. { A } ) C_ ( TC ` A ) |
| 29 | ssun1 | |- ( TC ` A ) C_ ( ( TC ` A ) u. { A } ) |
|
| 30 | 28 29 | sstri | |- U. ( ( TC ` A ) u. { A } ) C_ ( ( TC ` A ) u. { A } ) |
| 31 | df-tr | |- ( Tr ( ( TC ` A ) u. { A } ) <-> U. ( ( TC ` A ) u. { A } ) C_ ( ( TC ` A ) u. { A } ) ) |
|
| 32 | 30 31 | mpbir | |- Tr ( ( TC ` A ) u. { A } ) |
| 33 | fvex | |- ( TC ` A ) e. _V |
|
| 34 | snex | |- { A } e. _V |
|
| 35 | 33 34 | unex | |- ( ( TC ` A ) u. { A } ) e. _V |
| 36 | eleq2 | |- ( x = ( ( TC ` A ) u. { A } ) -> ( A e. x <-> A e. ( ( TC ` A ) u. { A } ) ) ) |
|
| 37 | treq | |- ( x = ( ( TC ` A ) u. { A } ) -> ( Tr x <-> Tr ( ( TC ` A ) u. { A } ) ) ) |
|
| 38 | 36 37 | anbi12d | |- ( x = ( ( TC ` A ) u. { A } ) -> ( ( A e. x /\ Tr x ) <-> ( A e. ( ( TC ` A ) u. { A } ) /\ Tr ( ( TC ` A ) u. { A } ) ) ) ) |
| 39 | 35 38 | elab | |- ( ( ( TC ` A ) u. { A } ) e. { x | ( A e. x /\ Tr x ) } <-> ( A e. ( ( TC ` A ) u. { A } ) /\ Tr ( ( TC ` A ) u. { A } ) ) ) |
| 40 | 18 32 39 | mpbir2an | |- ( ( TC ` A ) u. { A } ) e. { x | ( A e. x /\ Tr x ) } |
| 41 | intss1 | |- ( ( ( TC ` A ) u. { A } ) e. { x | ( A e. x /\ Tr x ) } -> |^| { x | ( A e. x /\ Tr x ) } C_ ( ( TC ` A ) u. { A } ) ) |
|
| 42 | 40 41 | ax-mp | |- |^| { x | ( A e. x /\ Tr x ) } C_ ( ( TC ` A ) u. { A } ) |
| 43 | 15 42 | eqssi | |- ( ( TC ` A ) u. { A } ) = |^| { x | ( A e. x /\ Tr x ) } |