This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retanhcl | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 5 | rpcoshcl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ ) |
|
| 6 | 5 | rpne0d | |- ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 ) |
| 7 | tanval | |- ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) ) |
| 9 | 8 | oveq1d | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) ) |
| 10 | 4 | sincld | |- ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC ) |
| 11 | recoshcl | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR ) |
|
| 12 | 11 | recnd | |- ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC ) |
| 13 | 1 | a1i | |- ( A e. RR -> _i e. CC ) |
| 14 | ine0 | |- _i =/= 0 |
|
| 15 | 14 | a1i | |- ( A e. RR -> _i =/= 0 ) |
| 16 | 10 12 13 6 15 | divdiv32d | |- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
| 17 | 9 16 | eqtrd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) ) |
| 18 | resinhcl | |- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |
|
| 19 | 18 5 | rerpdivcld | |- ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) e. RR ) |
| 20 | 17 19 | eqeltrd | |- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR ) |