This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpoga.1 | |- ( ( x = A /\ y = B ) -> R = S ) |
|
| ovmpoga.2 | |- F = ( x e. C , y e. D |-> R ) |
||
| Assertion | ovmpoga | |- ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpoga.1 | |- ( ( x = A /\ y = B ) -> R = S ) |
|
| 2 | ovmpoga.2 | |- F = ( x e. C , y e. D |-> R ) |
|
| 3 | elex | |- ( S e. H -> S e. _V ) |
|
| 4 | 2 | a1i | |- ( ( A e. C /\ B e. D /\ S e. _V ) -> F = ( x e. C , y e. D |-> R ) ) |
| 5 | 1 | adantl | |- ( ( ( A e. C /\ B e. D /\ S e. _V ) /\ ( x = A /\ y = B ) ) -> R = S ) |
| 6 | simp1 | |- ( ( A e. C /\ B e. D /\ S e. _V ) -> A e. C ) |
|
| 7 | simp2 | |- ( ( A e. C /\ B e. D /\ S e. _V ) -> B e. D ) |
|
| 8 | simp3 | |- ( ( A e. C /\ B e. D /\ S e. _V ) -> S e. _V ) |
|
| 9 | 4 5 6 7 8 | ovmpod | |- ( ( A e. C /\ B e. D /\ S e. _V ) -> ( A F B ) = S ) |
| 10 | 3 9 | syl3an3 | |- ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S ) |