This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013) (Revised by Mario Carneiro, 15-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ser0.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | ser0 | |- ( N e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` N ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | 00id | |- ( 0 + 0 ) = 0 |
|
| 3 | 2 | a1i | |- ( N e. Z -> ( 0 + 0 ) = 0 ) |
| 4 | 1 | eleq2i | |- ( N e. Z <-> N e. ( ZZ>= ` M ) ) |
| 5 | 4 | biimpi | |- ( N e. Z -> N e. ( ZZ>= ` M ) ) |
| 6 | 0cn | |- 0 e. CC |
|
| 7 | elfzuz | |- ( k e. ( M ... N ) -> k e. ( ZZ>= ` M ) ) |
|
| 8 | 7 1 | eleqtrrdi | |- ( k e. ( M ... N ) -> k e. Z ) |
| 9 | 8 | adantl | |- ( ( N e. Z /\ k e. ( M ... N ) ) -> k e. Z ) |
| 10 | fvconst2g | |- ( ( 0 e. CC /\ k e. Z ) -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
|
| 11 | 6 9 10 | sylancr | |- ( ( N e. Z /\ k e. ( M ... N ) ) -> ( ( Z X. { 0 } ) ` k ) = 0 ) |
| 12 | 3 5 11 | seqid3 | |- ( N e. Z -> ( seq M ( + , ( Z X. { 0 } ) ) ` N ) = 0 ) |