This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit relation is function-like, and with codomain the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclim | |- ~~> : dom ~~> --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel | |- Rel ~~> |
|
| 2 | climuni | |- ( ( x ~~> y /\ x ~~> z ) -> y = z ) |
|
| 3 | 2 | ax-gen | |- A. z ( ( x ~~> y /\ x ~~> z ) -> y = z ) |
| 4 | 3 | ax-gen | |- A. y A. z ( ( x ~~> y /\ x ~~> z ) -> y = z ) |
| 5 | 4 | ax-gen | |- A. x A. y A. z ( ( x ~~> y /\ x ~~> z ) -> y = z ) |
| 6 | dffun2 | |- ( Fun ~~> <-> ( Rel ~~> /\ A. x A. y A. z ( ( x ~~> y /\ x ~~> z ) -> y = z ) ) ) |
|
| 7 | 1 5 6 | mpbir2an | |- Fun ~~> |
| 8 | funfn | |- ( Fun ~~> <-> ~~> Fn dom ~~> ) |
|
| 9 | 7 8 | mpbi | |- ~~> Fn dom ~~> |
| 10 | vex | |- y e. _V |
|
| 11 | 10 | elrn | |- ( y e. ran ~~> <-> E. x x ~~> y ) |
| 12 | climcl | |- ( x ~~> y -> y e. CC ) |
|
| 13 | 12 | exlimiv | |- ( E. x x ~~> y -> y e. CC ) |
| 14 | 11 13 | sylbi | |- ( y e. ran ~~> -> y e. CC ) |
| 15 | 14 | ssriv | |- ran ~~> C_ CC |
| 16 | df-f | |- ( ~~> : dom ~~> --> CC <-> ( ~~> Fn dom ~~> /\ ran ~~> C_ CC ) ) |
|
| 17 | 9 15 16 | mpbir2an | |- ~~> : dom ~~> --> CC |