This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subthinc.1 | |- D = ( C |`cat J ) |
|
| subthinc.j | |- ( ph -> J e. ( Subcat ` C ) ) |
||
| subthinc.c | |- ( ph -> C e. ThinCat ) |
||
| Assertion | subthinc | |- ( ph -> D e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subthinc.1 | |- D = ( C |`cat J ) |
|
| 2 | subthinc.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 3 | subthinc.c | |- ( ph -> C e. ThinCat ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqidd | |- ( ph -> dom dom J = dom dom J ) |
|
| 6 | 2 5 | subcfn | |- ( ph -> J Fn ( dom dom J X. dom dom J ) ) |
| 7 | 2 6 4 | subcss1 | |- ( ph -> dom dom J C_ ( Base ` C ) ) |
| 8 | 1 4 3 6 7 | rescbas | |- ( ph -> dom dom J = ( Base ` D ) ) |
| 9 | 1 4 3 6 7 | reschom | |- ( ph -> J = ( Hom ` D ) ) |
| 10 | 2 | adantr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> J e. ( Subcat ` C ) ) |
| 11 | 6 | adantr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> J Fn ( dom dom J X. dom dom J ) ) |
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | simprl | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> x e. dom dom J ) |
|
| 14 | simprr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> y e. dom dom J ) |
|
| 15 | 10 11 12 13 14 | subcss2 | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> ( x J y ) C_ ( x ( Hom ` C ) y ) ) |
| 16 | 3 | adantr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> C e. ThinCat ) |
| 17 | 7 | adantr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> dom dom J C_ ( Base ` C ) ) |
| 18 | 17 13 | sseldd | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> x e. ( Base ` C ) ) |
| 19 | 17 14 | sseldd | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> y e. ( Base ` C ) ) |
| 20 | 16 18 19 4 12 | thincmo | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E* f f e. ( x ( Hom ` C ) y ) ) |
| 21 | mosssn2 | |- ( E* f f e. ( x ( Hom ` C ) y ) <-> E. f ( x ( Hom ` C ) y ) C_ { f } ) |
|
| 22 | 20 21 | sylib | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E. f ( x ( Hom ` C ) y ) C_ { f } ) |
| 23 | sstr2 | |- ( ( x J y ) C_ ( x ( Hom ` C ) y ) -> ( ( x ( Hom ` C ) y ) C_ { f } -> ( x J y ) C_ { f } ) ) |
|
| 24 | 23 | eximdv | |- ( ( x J y ) C_ ( x ( Hom ` C ) y ) -> ( E. f ( x ( Hom ` C ) y ) C_ { f } -> E. f ( x J y ) C_ { f } ) ) |
| 25 | 15 22 24 | sylc | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E. f ( x J y ) C_ { f } ) |
| 26 | mosssn2 | |- ( E* f f e. ( x J y ) <-> E. f ( x J y ) C_ { f } ) |
|
| 27 | 25 26 | sylibr | |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E* f f e. ( x J y ) ) |
| 28 | 1 2 | subccat | |- ( ph -> D e. Cat ) |
| 29 | 8 9 27 28 | isthincd | |- ( ph -> D e. ThinCat ) |