This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinclem1.b | |- B = ( Base ` D ) |
|
| functhinclem1.c | |- C = ( Base ` E ) |
||
| functhinclem1.h | |- H = ( Hom ` D ) |
||
| functhinclem1.j | |- J = ( Hom ` E ) |
||
| functhinclem1.e | |- ( ph -> E e. ThinCat ) |
||
| functhinclem1.f | |- ( ph -> F : B --> C ) |
||
| functhinclem1.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
||
| functhinclem1.1 | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
||
| Assertion | functhinclem1 | |- ( ph -> ( ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) <-> G = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem1.b | |- B = ( Base ` D ) |
|
| 2 | functhinclem1.c | |- C = ( Base ` E ) |
|
| 3 | functhinclem1.h | |- H = ( Hom ` D ) |
|
| 4 | functhinclem1.j | |- J = ( Hom ` E ) |
|
| 5 | functhinclem1.e | |- ( ph -> E e. ThinCat ) |
|
| 6 | functhinclem1.f | |- ( ph -> F : B --> C ) |
|
| 7 | functhinclem1.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
|
| 8 | functhinclem1.1 | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
|
| 9 | simpl | |- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> ph ) |
|
| 10 | simpr2 | |- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> G Fn ( B X. B ) ) |
|
| 11 | simpr3 | |- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
|
| 12 | eqid | |- ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) |
|
| 13 | 8 | adantlr | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 14 | 5 | ad2antrr | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) |
| 15 | 6 | ad2antrr | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> F : B --> C ) |
| 16 | simprl | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> z e. B ) |
|
| 17 | 15 16 | ffvelcdmd | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( F ` z ) e. C ) |
| 18 | simprr | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> w e. B ) |
|
| 19 | 15 18 | ffvelcdmd | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( F ` w ) e. C ) |
| 20 | 14 17 19 2 4 | thincmo | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E* m m e. ( ( F ` z ) J ( F ` w ) ) ) |
| 21 | 12 13 20 | mofeu | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> ( z G w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) ) |
| 22 | oveq1 | |- ( x = z -> ( x H y ) = ( z H y ) ) |
|
| 23 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 24 | 23 | oveq1d | |- ( x = z -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` z ) J ( F ` y ) ) ) |
| 25 | 22 24 | xpeq12d | |- ( x = z -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( z H y ) X. ( ( F ` z ) J ( F ` y ) ) ) ) |
| 26 | oveq2 | |- ( y = w -> ( z H y ) = ( z H w ) ) |
|
| 27 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 28 | 27 | oveq2d | |- ( y = w -> ( ( F ` z ) J ( F ` y ) ) = ( ( F ` z ) J ( F ` w ) ) ) |
| 29 | 26 28 | xpeq12d | |- ( y = w -> ( ( z H y ) X. ( ( F ` z ) J ( F ` y ) ) ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
| 30 | ovex | |- ( z H w ) e. _V |
|
| 31 | ovex | |- ( ( F ` z ) J ( F ` w ) ) e. _V |
|
| 32 | 30 31 | xpex | |- ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) e. _V |
| 33 | 25 29 7 32 | ovmpo | |- ( ( z e. B /\ w e. B ) -> ( z K w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
| 34 | 33 | adantl | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( z K w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
| 35 | 34 | eqeq2d | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) = ( z K w ) <-> ( z G w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) ) |
| 36 | 21 35 | bitr4d | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> ( z G w ) = ( z K w ) ) ) |
| 37 | 36 | 2ralbidva | |- ( ( ph /\ G Fn ( B X. B ) ) -> ( A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
| 38 | simpr | |- ( ( ph /\ G Fn ( B X. B ) ) -> G Fn ( B X. B ) ) |
|
| 39 | ovex | |- ( x H y ) e. _V |
|
| 40 | ovex | |- ( ( F ` x ) J ( F ` y ) ) e. _V |
|
| 41 | 39 40 | xpex | |- ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) e. _V |
| 42 | 7 41 | fnmpoi | |- K Fn ( B X. B ) |
| 43 | eqfnov2 | |- ( ( G Fn ( B X. B ) /\ K Fn ( B X. B ) ) -> ( G = K <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
|
| 44 | 38 42 43 | sylancl | |- ( ( ph /\ G Fn ( B X. B ) ) -> ( G = K <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
| 45 | 37 44 | bitr4d | |- ( ( ph /\ G Fn ( B X. B ) ) -> ( A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> G = K ) ) |
| 46 | 45 | biimpa | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) -> G = K ) |
| 47 | 9 10 11 46 | syl21anc | |- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> G = K ) |
| 48 | 1 | fvexi | |- B e. _V |
| 49 | 48 48 | mpoex | |- ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) e. _V |
| 50 | 7 49 | eqeltri | |- K e. _V |
| 51 | eleq1 | |- ( G = K -> ( G e. _V <-> K e. _V ) ) |
|
| 52 | 50 51 | mpbiri | |- ( G = K -> G e. _V ) |
| 53 | 52 | adantl | |- ( ( ph /\ G = K ) -> G e. _V ) |
| 54 | fneq1 | |- ( G = K -> ( G Fn ( B X. B ) <-> K Fn ( B X. B ) ) ) |
|
| 55 | 42 54 | mpbiri | |- ( G = K -> G Fn ( B X. B ) ) |
| 56 | 55 | adantl | |- ( ( ph /\ G = K ) -> G Fn ( B X. B ) ) |
| 57 | simpl | |- ( ( ph /\ G = K ) -> ph ) |
|
| 58 | simpr | |- ( ( ph /\ G = K ) -> G = K ) |
|
| 59 | 45 | biimpar | |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ G = K ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
| 60 | 57 56 58 59 | syl21anc | |- ( ( ph /\ G = K ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
| 61 | 53 56 60 | 3jca | |- ( ( ph /\ G = K ) -> ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) |
| 62 | 47 61 | impbida | |- ( ph -> ( ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) <-> G = K ) ) |