This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthincd.b | |- ( ph -> B = ( Base ` C ) ) |
|
| isthincd.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| isthincd.t | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x H y ) ) |
||
| isthincd.c | |- ( ph -> C e. Cat ) |
||
| Assertion | isthincd | |- ( ph -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | isthincd.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 3 | isthincd.t | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x H y ) ) |
|
| 4 | isthincd.c | |- ( ph -> C e. Cat ) |
|
| 5 | 3 | ralrimivva | |- ( ph -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
| 6 | 2 | oveqd | |- ( ph -> ( x H y ) = ( x ( Hom ` C ) y ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( f e. ( x H y ) <-> f e. ( x ( Hom ` C ) y ) ) ) |
| 8 | 7 | mobidv | |- ( ph -> ( E* f f e. ( x H y ) <-> E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 9 | 1 8 | raleqbidv | |- ( ph -> ( A. y e. B E* f f e. ( x H y ) <-> A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 10 | 1 9 | raleqbidv | |- ( ph -> ( A. x e. B A. y e. B E* f f e. ( x H y ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 11 | 5 10 | mpbid | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) |
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 14 | 12 13 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) E* f f e. ( x ( Hom ` C ) y ) ) ) |
| 15 | 4 11 14 | sylanbrc | |- ( ph -> C e. ThinCat ) |