This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subthinc.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| subthinc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | ||
| subthinc.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | ||
| Assertion | subthinc | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subthinc.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | subthinc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 3 | subthinc.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | eqidd | ⊢ ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 ) | |
| 6 | 2 5 | subcfn | ⊢ ( 𝜑 → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 7 | 2 6 4 | subcss1 | ⊢ ( 𝜑 → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
| 8 | 1 4 3 6 7 | rescbas | ⊢ ( 𝜑 → dom dom 𝐽 = ( Base ‘ 𝐷 ) ) |
| 9 | 1 4 3 6 7 | reschom | ⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 12 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 13 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑥 ∈ dom dom 𝐽 ) | |
| 14 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑦 ∈ dom dom 𝐽 ) | |
| 15 | 10 11 12 13 14 | subcss2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐶 ∈ ThinCat ) |
| 17 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
| 18 | 17 13 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 19 | 17 14 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 20 | 16 18 19 4 12 | thincmo | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 21 | mosssn2 | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } ) | |
| 22 | 20 21 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } ) |
| 23 | sstr2 | ⊢ ( ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } → ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) ) | |
| 24 | 23 | eximdv | ⊢ ( ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } → ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) ) |
| 25 | 15 22 24 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) |
| 26 | mosssn2 | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ↔ ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) | |
| 27 | 25 26 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ) |
| 28 | 1 2 | subccat | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 29 | 8 9 27 28 | isthincd | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |