This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdprd.1 | |- H = ( G |`s A ) |
|
| subgdprd.2 | |- ( ph -> A e. ( SubGrp ` G ) ) |
||
| subgdprd.3 | |- ( ph -> G dom DProd S ) |
||
| subgdprd.4 | |- ( ph -> ran S C_ ~P A ) |
||
| Assertion | subgdprd | |- ( ph -> ( H DProd S ) = ( G DProd S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdprd.1 | |- H = ( G |`s A ) |
|
| 2 | subgdprd.2 | |- ( ph -> A e. ( SubGrp ` G ) ) |
|
| 3 | subgdprd.3 | |- ( ph -> G dom DProd S ) |
|
| 4 | subgdprd.4 | |- ( ph -> ran S C_ ~P A ) |
|
| 5 | 1 | subggrp | |- ( A e. ( SubGrp ` G ) -> H e. Grp ) |
| 6 | 2 5 | syl | |- ( ph -> H e. Grp ) |
| 7 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 8 | 7 | subgacs | |- ( H e. Grp -> ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) ) |
| 9 | acsmre | |- ( ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
|
| 10 | 6 8 9 | 3syl | |- ( ph -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
| 11 | subgrcl | |- ( A e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 12 | 2 11 | syl | |- ( ph -> G e. Grp ) |
| 13 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 14 | 13 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 15 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 16 | 12 14 15 | 3syl | |- ( ph -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 17 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 18 | dprdf | |- ( G dom DProd S -> S : dom S --> ( SubGrp ` G ) ) |
|
| 19 | frn | |- ( S : dom S --> ( SubGrp ` G ) -> ran S C_ ( SubGrp ` G ) ) |
|
| 20 | 3 18 19 | 3syl | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 21 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 22 | 16 21 | syl | |- ( ph -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 23 | 20 22 | sstrd | |- ( ph -> ran S C_ ~P ( Base ` G ) ) |
| 24 | sspwuni | |- ( ran S C_ ~P ( Base ` G ) <-> U. ran S C_ ( Base ` G ) ) |
|
| 25 | 23 24 | sylib | |- ( ph -> U. ran S C_ ( Base ` G ) ) |
| 26 | 16 17 25 | mrcssidd | |- ( ph -> U. ran S C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 27 | 17 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` G ) ) |
| 28 | 16 25 27 | syl2anc | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` G ) ) |
| 29 | sspwuni | |- ( ran S C_ ~P A <-> U. ran S C_ A ) |
|
| 30 | 4 29 | sylib | |- ( ph -> U. ran S C_ A ) |
| 31 | 17 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ A /\ A e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ A ) |
| 32 | 16 30 2 31 | syl3anc | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ A ) |
| 33 | 1 | subsubg | |- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ A ) ) ) |
| 34 | 2 33 | syl | |- ( ph -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ A ) ) ) |
| 35 | 28 32 34 | mpbir2and | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` H ) ) |
| 36 | eqid | |- ( mrCls ` ( SubGrp ` H ) ) = ( mrCls ` ( SubGrp ` H ) ) |
|
| 37 | 36 | mrcsscl | |- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ran S C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) e. ( SubGrp ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 38 | 10 26 35 37 | syl3anc | |- ( ph -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 39 | 1 | subgdmdprd | |- ( A e. ( SubGrp ` G ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |
| 40 | 2 39 | syl | |- ( ph -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |
| 41 | 3 4 40 | mpbir2and | |- ( ph -> H dom DProd S ) |
| 42 | eqidd | |- ( ph -> dom S = dom S ) |
|
| 43 | 41 42 | dprdf2 | |- ( ph -> S : dom S --> ( SubGrp ` H ) ) |
| 44 | 43 | frnd | |- ( ph -> ran S C_ ( SubGrp ` H ) ) |
| 45 | mresspw | |- ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
|
| 46 | 10 45 | syl | |- ( ph -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
| 47 | 44 46 | sstrd | |- ( ph -> ran S C_ ~P ( Base ` H ) ) |
| 48 | sspwuni | |- ( ran S C_ ~P ( Base ` H ) <-> U. ran S C_ ( Base ` H ) ) |
|
| 49 | 47 48 | sylib | |- ( ph -> U. ran S C_ ( Base ` H ) ) |
| 50 | 10 36 49 | mrcssidd | |- ( ph -> U. ran S C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) ) |
| 51 | 36 | mrccl | |- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ran S C_ ( Base ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` H ) ) |
| 52 | 10 49 51 | syl2anc | |- ( ph -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` H ) ) |
| 53 | 1 | subsubg | |- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) C_ A ) ) ) |
| 54 | 2 53 | syl | |- ( ph -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) C_ A ) ) ) |
| 55 | 52 54 | mpbid | |- ( ph -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) C_ A ) ) |
| 56 | 55 | simpld | |- ( ph -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` G ) ) |
| 57 | 17 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ran S C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) ) |
| 58 | 16 50 56 57 | syl3anc | |- ( ph -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) ) |
| 59 | 38 58 | eqssd | |- ( ph -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 60 | 36 | dprdspan | |- ( H dom DProd S -> ( H DProd S ) = ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) ) |
| 61 | 41 60 | syl | |- ( ph -> ( H DProd S ) = ( ( mrCls ` ( SubGrp ` H ) ) ` U. ran S ) ) |
| 62 | 17 | dprdspan | |- ( G dom DProd S -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 63 | 3 62 | syl | |- ( ph -> ( G DProd S ) = ( ( mrCls ` ( SubGrp ` G ) ) ` U. ran S ) ) |
| 64 | 59 61 63 | 3eqtr4d | |- ( ph -> ( H DProd S ) = ( G DProd S ) ) |