This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubg.h | |- H = ( G |`s S ) |
|
| Assertion | subsubg | |- ( S e. ( SubGrp ` G ) -> ( A e. ( SubGrp ` H ) <-> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubg.h | |- H = ( G |`s S ) |
|
| 2 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 3 | 2 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> G e. Grp ) |
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | 4 | subgss | |- ( A e. ( SubGrp ` H ) -> A C_ ( Base ` H ) ) |
| 6 | 5 | adantl | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` H ) ) |
| 7 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 8 | 7 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S = ( Base ` H ) ) |
| 9 | 6 8 | sseqtrrd | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ S ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 10 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 12 | 11 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S C_ ( Base ` G ) ) |
| 13 | 9 12 | sstrd | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` G ) ) |
| 14 | 1 | oveq1i | |- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
| 15 | ressabs | |- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
|
| 16 | 14 15 | eqtrid | |- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
| 17 | 9 16 | syldan | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 18 | eqid | |- ( H |`s A ) = ( H |`s A ) |
|
| 19 | 18 | subggrp | |- ( A e. ( SubGrp ` H ) -> ( H |`s A ) e. Grp ) |
| 20 | 19 | adantl | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) e. Grp ) |
| 21 | 17 20 | eqeltrrd | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( G |`s A ) e. Grp ) |
| 22 | 10 | issubg | |- ( A e. ( SubGrp ` G ) <-> ( G e. Grp /\ A C_ ( Base ` G ) /\ ( G |`s A ) e. Grp ) ) |
| 23 | 3 13 21 22 | syl3anbrc | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A e. ( SubGrp ` G ) ) |
| 24 | 23 9 | jca | |- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) |
| 25 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 26 | 25 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> H e. Grp ) |
| 27 | simprr | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ S ) |
|
| 28 | 7 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
| 29 | 27 28 | sseqtrd | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
| 30 | 16 | adantrl | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 31 | eqid | |- ( G |`s A ) = ( G |`s A ) |
|
| 32 | 31 | subggrp | |- ( A e. ( SubGrp ` G ) -> ( G |`s A ) e. Grp ) |
| 33 | 32 | ad2antrl | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Grp ) |
| 34 | 30 33 | eqeltrd | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Grp ) |
| 35 | 4 | issubg | |- ( A e. ( SubGrp ` H ) <-> ( H e. Grp /\ A C_ ( Base ` H ) /\ ( H |`s A ) e. Grp ) ) |
| 36 | 26 29 34 35 | syl3anbrc | |- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A e. ( SubGrp ` H ) ) |
| 37 | 24 36 | impbida | |- ( S e. ( SubGrp ` G ) -> ( A e. ( SubGrp ` H ) <-> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) ) |