This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssps.y | |- Y = ( BaseSet ` W ) |
|
| ssps.s | |- S = ( .sOLD ` U ) |
||
| ssps.r | |- R = ( .sOLD ` W ) |
||
| ssps.h | |- H = ( SubSp ` U ) |
||
| Assertion | ssps | |- ( ( U e. NrmCVec /\ W e. H ) -> R = ( S |` ( CC X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssps.y | |- Y = ( BaseSet ` W ) |
|
| 2 | ssps.s | |- S = ( .sOLD ` U ) |
|
| 3 | ssps.r | |- R = ( .sOLD ` W ) |
|
| 4 | ssps.h | |- H = ( SubSp ` U ) |
|
| 5 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 6 | 5 2 | nvsf | |- ( U e. NrmCVec -> S : ( CC X. ( BaseSet ` U ) ) --> ( BaseSet ` U ) ) |
| 7 | 6 | ffund | |- ( U e. NrmCVec -> Fun S ) |
| 8 | 7 | funresd | |- ( U e. NrmCVec -> Fun ( S |` ( CC X. Y ) ) ) |
| 9 | 8 | adantr | |- ( ( U e. NrmCVec /\ W e. H ) -> Fun ( S |` ( CC X. Y ) ) ) |
| 10 | 4 | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| 11 | 1 3 | nvsf | |- ( W e. NrmCVec -> R : ( CC X. Y ) --> Y ) |
| 12 | 10 11 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> R : ( CC X. Y ) --> Y ) |
| 13 | 12 | ffnd | |- ( ( U e. NrmCVec /\ W e. H ) -> R Fn ( CC X. Y ) ) |
| 14 | fnresdm | |- ( R Fn ( CC X. Y ) -> ( R |` ( CC X. Y ) ) = R ) |
|
| 15 | 13 14 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( R |` ( CC X. Y ) ) = R ) |
| 16 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 17 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 18 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 19 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 20 | 16 17 2 3 18 19 4 | isssp | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ R C_ S /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
| 21 | 20 | simplbda | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ R C_ S /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) |
| 22 | 21 | simp2d | |- ( ( U e. NrmCVec /\ W e. H ) -> R C_ S ) |
| 23 | ssres | |- ( R C_ S -> ( R |` ( CC X. Y ) ) C_ ( S |` ( CC X. Y ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( U e. NrmCVec /\ W e. H ) -> ( R |` ( CC X. Y ) ) C_ ( S |` ( CC X. Y ) ) ) |
| 25 | 15 24 | eqsstrrd | |- ( ( U e. NrmCVec /\ W e. H ) -> R C_ ( S |` ( CC X. Y ) ) ) |
| 26 | 9 13 25 | 3jca | |- ( ( U e. NrmCVec /\ W e. H ) -> ( Fun ( S |` ( CC X. Y ) ) /\ R Fn ( CC X. Y ) /\ R C_ ( S |` ( CC X. Y ) ) ) ) |
| 27 | oprssov | |- ( ( ( Fun ( S |` ( CC X. Y ) ) /\ R Fn ( CC X. Y ) /\ R C_ ( S |` ( CC X. Y ) ) ) /\ ( x e. CC /\ y e. Y ) ) -> ( x ( S |` ( CC X. Y ) ) y ) = ( x R y ) ) |
|
| 28 | 26 27 | sylan | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( x e. CC /\ y e. Y ) ) -> ( x ( S |` ( CC X. Y ) ) y ) = ( x R y ) ) |
| 29 | 28 | eqcomd | |- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( x e. CC /\ y e. Y ) ) -> ( x R y ) = ( x ( S |` ( CC X. Y ) ) y ) ) |
| 30 | 29 | ralrimivva | |- ( ( U e. NrmCVec /\ W e. H ) -> A. x e. CC A. y e. Y ( x R y ) = ( x ( S |` ( CC X. Y ) ) y ) ) |
| 31 | eqid | |- ( CC X. Y ) = ( CC X. Y ) |
|
| 32 | 30 31 | jctil | |- ( ( U e. NrmCVec /\ W e. H ) -> ( ( CC X. Y ) = ( CC X. Y ) /\ A. x e. CC A. y e. Y ( x R y ) = ( x ( S |` ( CC X. Y ) ) y ) ) ) |
| 33 | 6 | ffnd | |- ( U e. NrmCVec -> S Fn ( CC X. ( BaseSet ` U ) ) ) |
| 34 | 33 | adantr | |- ( ( U e. NrmCVec /\ W e. H ) -> S Fn ( CC X. ( BaseSet ` U ) ) ) |
| 35 | ssid | |- CC C_ CC |
|
| 36 | 5 1 4 | sspba | |- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ ( BaseSet ` U ) ) |
| 37 | xpss12 | |- ( ( CC C_ CC /\ Y C_ ( BaseSet ` U ) ) -> ( CC X. Y ) C_ ( CC X. ( BaseSet ` U ) ) ) |
|
| 38 | 35 36 37 | sylancr | |- ( ( U e. NrmCVec /\ W e. H ) -> ( CC X. Y ) C_ ( CC X. ( BaseSet ` U ) ) ) |
| 39 | fnssres | |- ( ( S Fn ( CC X. ( BaseSet ` U ) ) /\ ( CC X. Y ) C_ ( CC X. ( BaseSet ` U ) ) ) -> ( S |` ( CC X. Y ) ) Fn ( CC X. Y ) ) |
|
| 40 | 34 38 39 | syl2anc | |- ( ( U e. NrmCVec /\ W e. H ) -> ( S |` ( CC X. Y ) ) Fn ( CC X. Y ) ) |
| 41 | eqfnov | |- ( ( R Fn ( CC X. Y ) /\ ( S |` ( CC X. Y ) ) Fn ( CC X. Y ) ) -> ( R = ( S |` ( CC X. Y ) ) <-> ( ( CC X. Y ) = ( CC X. Y ) /\ A. x e. CC A. y e. Y ( x R y ) = ( x ( S |` ( CC X. Y ) ) y ) ) ) ) |
|
| 42 | 13 40 41 | syl2anc | |- ( ( U e. NrmCVec /\ W e. H ) -> ( R = ( S |` ( CC X. Y ) ) <-> ( ( CC X. Y ) = ( CC X. Y ) /\ A. x e. CC A. y e. Y ( x R y ) = ( x ( S |` ( CC X. Y ) ) y ) ) ) ) |
| 43 | 32 42 | mpbird | |- ( ( U e. NrmCVec /\ W e. H ) -> R = ( S |` ( CC X. Y ) ) ) |