This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssp.g | |- G = ( +v ` U ) |
|
| isssp.f | |- F = ( +v ` W ) |
||
| isssp.s | |- S = ( .sOLD ` U ) |
||
| isssp.r | |- R = ( .sOLD ` W ) |
||
| isssp.n | |- N = ( normCV ` U ) |
||
| isssp.m | |- M = ( normCV ` W ) |
||
| isssp.h | |- H = ( SubSp ` U ) |
||
| Assertion | isssp | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( F C_ G /\ R C_ S /\ M C_ N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssp.g | |- G = ( +v ` U ) |
|
| 2 | isssp.f | |- F = ( +v ` W ) |
|
| 3 | isssp.s | |- S = ( .sOLD ` U ) |
|
| 4 | isssp.r | |- R = ( .sOLD ` W ) |
|
| 5 | isssp.n | |- N = ( normCV ` U ) |
|
| 6 | isssp.m | |- M = ( normCV ` W ) |
|
| 7 | isssp.h | |- H = ( SubSp ` U ) |
|
| 8 | 1 3 5 7 | sspval | |- ( U e. NrmCVec -> H = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) |
| 9 | 8 | eleq2d | |- ( U e. NrmCVec -> ( W e. H <-> W e. { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) ) |
| 10 | fveq2 | |- ( w = W -> ( +v ` w ) = ( +v ` W ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( w = W -> ( +v ` w ) = F ) |
| 12 | 11 | sseq1d | |- ( w = W -> ( ( +v ` w ) C_ G <-> F C_ G ) ) |
| 13 | fveq2 | |- ( w = W -> ( .sOLD ` w ) = ( .sOLD ` W ) ) |
|
| 14 | 13 4 | eqtr4di | |- ( w = W -> ( .sOLD ` w ) = R ) |
| 15 | 14 | sseq1d | |- ( w = W -> ( ( .sOLD ` w ) C_ S <-> R C_ S ) ) |
| 16 | fveq2 | |- ( w = W -> ( normCV ` w ) = ( normCV ` W ) ) |
|
| 17 | 16 6 | eqtr4di | |- ( w = W -> ( normCV ` w ) = M ) |
| 18 | 17 | sseq1d | |- ( w = W -> ( ( normCV ` w ) C_ N <-> M C_ N ) ) |
| 19 | 12 15 18 | 3anbi123d | |- ( w = W -> ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) <-> ( F C_ G /\ R C_ S /\ M C_ N ) ) ) |
| 20 | 19 | elrab | |- ( W e. { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } <-> ( W e. NrmCVec /\ ( F C_ G /\ R C_ S /\ M C_ N ) ) ) |
| 21 | 9 20 | bitrdi | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( F C_ G /\ R C_ S /\ M C_ N ) ) ) ) |