This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqfnov | |- ( ( F Fn ( A X. B ) /\ G Fn ( C X. D ) ) -> ( F = G <-> ( ( A X. B ) = ( C X. D ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfv2 | |- ( ( F Fn ( A X. B ) /\ G Fn ( C X. D ) ) -> ( F = G <-> ( ( A X. B ) = ( C X. D ) /\ A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) ) ) ) |
|
| 2 | fveq2 | |- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
|
| 3 | fveq2 | |- ( z = <. x , y >. -> ( G ` z ) = ( G ` <. x , y >. ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( z = <. x , y >. -> ( ( F ` z ) = ( G ` z ) <-> ( F ` <. x , y >. ) = ( G ` <. x , y >. ) ) ) |
| 5 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 6 | df-ov | |- ( x G y ) = ( G ` <. x , y >. ) |
|
| 7 | 5 6 | eqeq12i | |- ( ( x F y ) = ( x G y ) <-> ( F ` <. x , y >. ) = ( G ` <. x , y >. ) ) |
| 8 | 4 7 | bitr4di | |- ( z = <. x , y >. -> ( ( F ` z ) = ( G ` z ) <-> ( x F y ) = ( x G y ) ) ) |
| 9 | 8 | ralxp | |- ( A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) |
| 10 | 9 | anbi2i | |- ( ( ( A X. B ) = ( C X. D ) /\ A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) ) <-> ( ( A X. B ) = ( C X. D ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) |
| 11 | 1 10 | bitrdi | |- ( ( F Fn ( A X. B ) /\ G Fn ( C X. D ) ) -> ( F = G <-> ( ( A X. B ) = ( C X. D ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) ) |