This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sspnv.h | |- H = ( SubSp ` U ) |
|
| Assertion | sspnv | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspnv.h | |- H = ( SubSp ` U ) |
|
| 2 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 3 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 4 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 5 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 6 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 7 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 8 | 2 3 4 5 6 7 1 | isssp | |- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
| 9 | 8 | simprbda | |- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |