This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication on a subspace is a restriction of scalar multiplication on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssps.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| ssps.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ssps.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| ssps.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | ssps | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssps.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | ssps.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | ssps.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 4 | ssps.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | 5 2 | nvsf | ⊢ ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 7 | 6 | ffund | ⊢ ( 𝑈 ∈ NrmCVec → Fun 𝑆 ) |
| 8 | 7 | funresd | ⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 10 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 11 | 1 3 | nvsf | ⊢ ( 𝑊 ∈ NrmCVec → 𝑅 : ( ℂ × 𝑌 ) ⟶ 𝑌 ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 : ( ℂ × 𝑌 ) ⟶ 𝑌 ) |
| 13 | 12 | ffnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 Fn ( ℂ × 𝑌 ) ) |
| 14 | fnresdm | ⊢ ( 𝑅 Fn ( ℂ × 𝑌 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) = 𝑅 ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) = 𝑅 ) |
| 16 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 17 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 19 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 20 | 16 17 2 3 18 19 4 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ 𝑅 ⊆ 𝑆 ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
| 21 | 20 | simplbda | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ 𝑅 ⊆ 𝑆 ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
| 22 | 21 | simp2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 ⊆ 𝑆 ) |
| 23 | ssres | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 25 | 15 24 | eqsstrrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 26 | 9 13 25 | 3jca | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ∧ 𝑅 Fn ( ℂ × 𝑌 ) ∧ 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) ) |
| 27 | oprssov | ⊢ ( ( ( Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ∧ 𝑅 Fn ( ℂ × 𝑌 ) ∧ 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) | |
| 28 | 26 27 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) |
| 31 | eqid | ⊢ ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) | |
| 32 | 30 31 | jctil | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) |
| 33 | 6 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 35 | ssid | ⊢ ℂ ⊆ ℂ | |
| 36 | 5 1 4 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 37 | xpss12 | ⊢ ( ( ℂ ⊆ ℂ ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) | |
| 38 | 35 36 37 | sylancr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 39 | fnssres | ⊢ ( ( 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ∧ ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) | |
| 40 | 34 38 39 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) |
| 41 | eqfnov | ⊢ ( ( 𝑅 Fn ( ℂ × 𝑌 ) ∧ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) → ( 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ↔ ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) ) | |
| 42 | 13 40 41 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ↔ ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) ) |
| 43 | 32 42 | mpbird | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |