This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oprssov | |- ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A F B ) = ( A G B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres | |- ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) |
|
| 2 | 1 | adantl | |- ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) |
| 3 | fndm | |- ( G Fn ( C X. D ) -> dom G = ( C X. D ) ) |
|
| 4 | 3 | reseq2d | |- ( G Fn ( C X. D ) -> ( F |` dom G ) = ( F |` ( C X. D ) ) ) |
| 5 | 4 | 3ad2ant2 | |- ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` dom G ) = ( F |` ( C X. D ) ) ) |
| 6 | funssres | |- ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G ) |
|
| 7 | 6 | 3adant2 | |- ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` dom G ) = G ) |
| 8 | 5 7 | eqtr3d | |- ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` ( C X. D ) ) = G ) |
| 9 | 8 | oveqd | |- ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( A ( F |` ( C X. D ) ) B ) = ( A G B ) ) |
| 10 | 9 | adantr | |- ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A ( F |` ( C X. D ) ) B ) = ( A G B ) ) |
| 11 | 2 10 | eqtr3d | |- ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A F B ) = ( A G B ) ) |