This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between square root and squares. (Contributed by NM, 31-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtsq2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 2 | sqrtge0 | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
|
| 3 | 1 2 | jca | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) ) |
| 4 | sq11 | |- ( ( ( ( sqrt ` A ) e. RR /\ 0 <_ ( sqrt ` A ) ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( ( sqrt ` A ) ^ 2 ) = ( B ^ 2 ) <-> ( sqrt ` A ) = B ) ) |
|
| 5 | 3 4 | sylan | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( ( sqrt ` A ) ^ 2 ) = ( B ^ 2 ) <-> ( sqrt ` A ) = B ) ) |
| 6 | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 7 | 6 | adantr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 8 | 7 | eqeq1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( ( sqrt ` A ) ^ 2 ) = ( B ^ 2 ) <-> A = ( B ^ 2 ) ) ) |
| 9 | 5 8 | bitr3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqrt ` A ) = B <-> A = ( B ^ 2 ) ) ) |