This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtval | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = A -> ( ( x ^ 2 ) = y <-> ( x ^ 2 ) = A ) ) |
|
| 2 | 1 | 3anbi1d | |- ( y = A -> ( ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 3 | 2 | riotabidv | |- ( y = A -> ( iota_ x e. CC ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 4 | df-sqrt | |- sqrt = ( y e. CC |-> ( iota_ x e. CC ( ( x ^ 2 ) = y /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 5 | riotaex | |- ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |