This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardf2 | |- card : { x | E. y e. On y ~~ x } --> On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-card | |- card = ( x e. _V |-> |^| { y e. On | y ~~ x } ) |
|
| 2 | 1 | funmpt2 | |- Fun card |
| 3 | rabab | |- { x e. _V | |^| { y e. On | y ~~ x } e. _V } = { x | |^| { y e. On | y ~~ x } e. _V } |
|
| 4 | 1 | dmmpt | |- dom card = { x e. _V | |^| { y e. On | y ~~ x } e. _V } |
| 5 | intexrab | |- ( E. y e. On y ~~ x <-> |^| { y e. On | y ~~ x } e. _V ) |
|
| 6 | 5 | abbii | |- { x | E. y e. On y ~~ x } = { x | |^| { y e. On | y ~~ x } e. _V } |
| 7 | 3 4 6 | 3eqtr4i | |- dom card = { x | E. y e. On y ~~ x } |
| 8 | df-fn | |- ( card Fn { x | E. y e. On y ~~ x } <-> ( Fun card /\ dom card = { x | E. y e. On y ~~ x } ) ) |
|
| 9 | 2 7 8 | mpbir2an | |- card Fn { x | E. y e. On y ~~ x } |
| 10 | simpr | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w = |^| { y e. On | y ~~ z } ) |
|
| 11 | vex | |- w e. _V |
|
| 12 | 10 11 | eqeltrrdi | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. _V ) |
| 13 | intex | |- ( { y e. On | y ~~ z } =/= (/) <-> |^| { y e. On | y ~~ z } e. _V ) |
|
| 14 | 12 13 | sylibr | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> { y e. On | y ~~ z } =/= (/) ) |
| 15 | rabn0 | |- ( { y e. On | y ~~ z } =/= (/) <-> E. y e. On y ~~ z ) |
|
| 16 | 14 15 | sylib | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> E. y e. On y ~~ z ) |
| 17 | vex | |- z e. _V |
|
| 18 | breq2 | |- ( x = z -> ( y ~~ x <-> y ~~ z ) ) |
|
| 19 | 18 | rexbidv | |- ( x = z -> ( E. y e. On y ~~ x <-> E. y e. On y ~~ z ) ) |
| 20 | 17 19 | elab | |- ( z e. { x | E. y e. On y ~~ x } <-> E. y e. On y ~~ z ) |
| 21 | 16 20 | sylibr | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> z e. { x | E. y e. On y ~~ x } ) |
| 22 | ssrab2 | |- { y e. On | y ~~ z } C_ On |
|
| 23 | oninton | |- ( ( { y e. On | y ~~ z } C_ On /\ { y e. On | y ~~ z } =/= (/) ) -> |^| { y e. On | y ~~ z } e. On ) |
|
| 24 | 22 14 23 | sylancr | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. On ) |
| 25 | 10 24 | eqeltrd | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w e. On ) |
| 26 | 21 25 | jca | |- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) ) |
| 27 | 26 | ssopab2i | |- { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } C_ { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } |
| 28 | df-card | |- card = ( z e. _V |-> |^| { y e. On | y ~~ z } ) |
|
| 29 | df-mpt | |- ( z e. _V |-> |^| { y e. On | y ~~ z } ) = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } |
|
| 30 | 28 29 | eqtri | |- card = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } |
| 31 | df-xp | |- ( { x | E. y e. On y ~~ x } X. On ) = { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } |
|
| 32 | 27 30 31 | 3sstr4i | |- card C_ ( { x | E. y e. On y ~~ x } X. On ) |
| 33 | dff2 | |- ( card : { x | E. y e. On y ~~ x } --> On <-> ( card Fn { x | E. y e. On y ~~ x } /\ card C_ ( { x | E. y e. On y ~~ x } X. On ) ) ) |
|
| 34 | 9 32 33 | mpbir2an | |- card : { x | E. y e. On y ~~ x } --> On |