This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022) Avoid ax-11 . (Revised by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnco | |- ran ( A o. B ) = ran ( A |` ran B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | brco | |- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
| 4 | 3 | exbii | |- ( E. x x ( A o. B ) y <-> E. x E. z ( x B z /\ z A y ) ) |
| 5 | breq1 | |- ( x = w -> ( x B z <-> w B z ) ) |
|
| 6 | 5 | anbi1d | |- ( x = w -> ( ( x B z /\ z A y ) <-> ( w B z /\ z A y ) ) ) |
| 7 | breq2 | |- ( z = w -> ( x B z <-> x B w ) ) |
|
| 8 | breq1 | |- ( z = w -> ( z A y <-> w A y ) ) |
|
| 9 | 7 8 | anbi12d | |- ( z = w -> ( ( x B z /\ z A y ) <-> ( x B w /\ w A y ) ) ) |
| 10 | 6 9 | excomw | |- ( E. x E. z ( x B z /\ z A y ) <-> E. z E. x ( x B z /\ z A y ) ) |
| 11 | vex | |- z e. _V |
|
| 12 | 11 | elrn | |- ( z e. ran B <-> E. x x B z ) |
| 13 | 12 | anbi1i | |- ( ( z e. ran B /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
| 14 | 2 | brresi | |- ( z ( A |` ran B ) y <-> ( z e. ran B /\ z A y ) ) |
| 15 | 19.41v | |- ( E. x ( x B z /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
|
| 16 | 13 14 15 | 3bitr4ri | |- ( E. x ( x B z /\ z A y ) <-> z ( A |` ran B ) y ) |
| 17 | 16 | exbii | |- ( E. z E. x ( x B z /\ z A y ) <-> E. z z ( A |` ran B ) y ) |
| 18 | 4 10 17 | 3bitri | |- ( E. x x ( A o. B ) y <-> E. z z ( A |` ran B ) y ) |
| 19 | 2 | elrn | |- ( y e. ran ( A o. B ) <-> E. x x ( A o. B ) y ) |
| 20 | 2 | elrn | |- ( y e. ran ( A |` ran B ) <-> E. z z ( A |` ran B ) y ) |
| 21 | 18 19 20 | 3bitr4i | |- ( y e. ran ( A o. B ) <-> y e. ran ( A |` ran B ) ) |
| 22 | 21 | eqriv | |- ran ( A o. B ) = ran ( A |` ran B ) |