This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for which A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011) Avoid ax-13 . (Revised by GG, 19-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issmo.1 | |- A : B --> On |
|
| issmo.2 | |- Ord B |
||
| issmo.3 | |- ( ( x e. B /\ y e. B ) -> ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) |
||
| issmo.4 | |- dom A = B |
||
| Assertion | issmo | |- Smo A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmo.1 | |- A : B --> On |
|
| 2 | issmo.2 | |- Ord B |
|
| 3 | issmo.3 | |- ( ( x e. B /\ y e. B ) -> ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) |
|
| 4 | issmo.4 | |- dom A = B |
|
| 5 | 4 | feq2i | |- ( A : dom A --> On <-> A : B --> On ) |
| 6 | 1 5 | mpbir | |- A : dom A --> On |
| 7 | ordeq | |- ( dom A = B -> ( Ord dom A <-> Ord B ) ) |
|
| 8 | 4 7 | ax-mp | |- ( Ord dom A <-> Ord B ) |
| 9 | 2 8 | mpbir | |- Ord dom A |
| 10 | 4 | eleq2i | |- ( x e. dom A <-> x e. B ) |
| 11 | 4 | eleq2i | |- ( y e. dom A <-> y e. B ) |
| 12 | 10 11 3 | syl2anb | |- ( ( x e. dom A /\ y e. dom A ) -> ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) |
| 13 | 12 | rgen2 | |- A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) |
| 14 | df-smo | |- ( Smo A <-> ( A : dom A --> On /\ Ord dom A /\ A. x e. dom A A. y e. dom A ( x e. y -> ( A ` x ) e. ( A ` y ) ) ) ) |
|
| 15 | 6 9 13 14 | mpbir3an | |- Smo A |