This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of both sides of 'less than'. (Contributed by NM, 29-Sep-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsub2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C - B ) < ( C - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesub2 | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B <_ A <-> ( C - A ) <_ ( C - B ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ A <-> ( C - A ) <_ ( C - B ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B <_ A <-> -. ( C - A ) <_ ( C - B ) ) ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 5 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 6 | 4 5 | ltnled | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> -. B <_ A ) ) |
| 7 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 8 | 7 5 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - B ) e. RR ) |
| 9 | 7 4 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - A ) e. RR ) |
| 10 | 8 9 | ltnled | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < ( C - A ) <-> -. ( C - A ) <_ ( C - B ) ) ) |
| 11 | 3 6 10 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C - B ) < ( C - A ) ) ) |