This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C - B ) <_ ( C - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C + A ) <_ ( C + B ) ) ) |
|
| 2 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 3 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 4 | 2 3 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
| 5 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 6 | lesubadd | |- ( ( ( C + A ) e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( C + A ) <_ ( C + B ) ) ) |
|
| 7 | 4 5 2 6 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( C + A ) <_ ( C + B ) ) ) |
| 8 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 9 | 3 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 10 | 5 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 11 | 8 9 10 | addsubd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) - B ) = ( ( C - B ) + A ) ) |
| 12 | 11 | breq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C + A ) - B ) <_ C <-> ( ( C - B ) + A ) <_ C ) ) |
| 13 | 1 7 12 | 3bitr2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( ( C - B ) + A ) <_ C ) ) |
| 14 | 2 5 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - B ) e. RR ) |
| 15 | leaddsub | |- ( ( ( C - B ) e. RR /\ A e. RR /\ C e. RR ) -> ( ( ( C - B ) + A ) <_ C <-> ( C - B ) <_ ( C - A ) ) ) |
|
| 16 | 14 3 2 15 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( C - B ) + A ) <_ C <-> ( C - B ) <_ ( C - A ) ) ) |
| 17 | 13 16 | bitrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C - B ) <_ ( C - A ) ) ) |