This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of j in the assertion, so it can be used with rexanuz and friends.) (Contributed by Mario Carneiro, 15-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cau3.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | cau3 | |- ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ A. m e. ( ZZ>= ` k ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cau3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 3 | 1 2 | eqsstri | |- Z C_ ZZ |
| 4 | id | |- ( ( F ` k ) e. CC -> ( F ` k ) e. CC ) |
|
| 5 | eleq1 | |- ( ( F ` k ) = ( F ` j ) -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) |
|
| 6 | eleq1 | |- ( ( F ` k ) = ( F ` m ) -> ( ( F ` k ) e. CC <-> ( F ` m ) e. CC ) ) |
|
| 7 | abssub | |- ( ( ( F ` j ) e. CC /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` j ) - ( F ` k ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
|
| 8 | 7 | 3adant1 | |- ( ( T. /\ ( F ` j ) e. CC /\ ( F ` k ) e. CC ) -> ( abs ` ( ( F ` j ) - ( F ` k ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 9 | abssub | |- ( ( ( F ` m ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( F ` m ) - ( F ` j ) ) ) = ( abs ` ( ( F ` j ) - ( F ` m ) ) ) ) |
|
| 10 | 9 | 3adant1 | |- ( ( T. /\ ( F ` m ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( F ` m ) - ( F ` j ) ) ) = ( abs ` ( ( F ` j ) - ( F ` m ) ) ) ) |
| 11 | abs3lem | |- ( ( ( ( F ` k ) e. CC /\ ( F ` m ) e. CC ) /\ ( ( F ` j ) e. CC /\ x e. RR ) ) -> ( ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < ( x / 2 ) /\ ( abs ` ( ( F ` j ) - ( F ` m ) ) ) < ( x / 2 ) ) -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
|
| 12 | 11 | 3adant1 | |- ( ( T. /\ ( ( F ` k ) e. CC /\ ( F ` m ) e. CC ) /\ ( ( F ` j ) e. CC /\ x e. RR ) ) -> ( ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < ( x / 2 ) /\ ( abs ` ( ( F ` j ) - ( F ` m ) ) ) < ( x / 2 ) ) -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 13 | 3 4 5 6 8 10 12 | cau3lem | |- ( T. -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ A. m e. ( ZZ>= ` k ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) |
| 14 | 13 | mptru | |- ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ A. m e. ( ZZ>= ` k ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |