This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for satffunlem2 . (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | satffunlem2lem1.s | |- S = ( M Sat E ) |
|
| satffunlem2lem1.a | |- A = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
||
| satffunlem2lem1.b | |- B = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
||
| Assertion | satffunlem2lem1 | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satffunlem2lem1.s | |- S = ( M Sat E ) |
|
| 2 | satffunlem2lem1.a | |- A = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
|
| 3 | satffunlem2lem1.b | |- B = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
|
| 4 | simpl | |- ( ( u = s /\ v = r ) -> u = s ) |
|
| 5 | 4 | fveq2d | |- ( ( u = s /\ v = r ) -> ( 1st ` u ) = ( 1st ` s ) ) |
| 6 | simpr | |- ( ( u = s /\ v = r ) -> v = r ) |
|
| 7 | 6 | fveq2d | |- ( ( u = s /\ v = r ) -> ( 1st ` v ) = ( 1st ` r ) ) |
| 8 | 5 7 | oveq12d | |- ( ( u = s /\ v = r ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) |
| 9 | 8 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
| 10 | 4 | fveq2d | |- ( ( u = s /\ v = r ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
| 11 | 6 | fveq2d | |- ( ( u = s /\ v = r ) -> ( 2nd ` v ) = ( 2nd ` r ) ) |
| 12 | 10 11 | ineq12d | |- ( ( u = s /\ v = r ) -> ( ( 2nd ` u ) i^i ( 2nd ` v ) ) = ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) |
| 13 | 12 | difeq2d | |- ( ( u = s /\ v = r ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) |
| 14 | 2 13 | eqtrid | |- ( ( u = s /\ v = r ) -> A = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) |
| 15 | 14 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( y = A <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
| 16 | 9 15 | anbi12d | |- ( ( u = s /\ v = r ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 17 | 16 | cbvrexdva | |- ( u = s -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 18 | simpr | |- ( ( u = s /\ i = j ) -> i = j ) |
|
| 19 | fveq2 | |- ( u = s -> ( 1st ` u ) = ( 1st ` s ) ) |
|
| 20 | 19 | adantr | |- ( ( u = s /\ i = j ) -> ( 1st ` u ) = ( 1st ` s ) ) |
| 21 | 18 20 | goaleq12d | |- ( ( u = s /\ i = j ) -> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) |
| 22 | 21 | eqeq2d | |- ( ( u = s /\ i = j ) -> ( x = A.g i ( 1st ` u ) <-> x = A.g j ( 1st ` s ) ) ) |
| 23 | 3 | eqeq2i | |- ( y = B <-> y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
| 24 | opeq1 | |- ( i = j -> <. i , z >. = <. j , z >. ) |
|
| 25 | 24 | sneqd | |- ( i = j -> { <. i , z >. } = { <. j , z >. } ) |
| 26 | sneq | |- ( i = j -> { i } = { j } ) |
|
| 27 | 26 | difeq2d | |- ( i = j -> ( _om \ { i } ) = ( _om \ { j } ) ) |
| 28 | 27 | reseq2d | |- ( i = j -> ( a |` ( _om \ { i } ) ) = ( a |` ( _om \ { j } ) ) ) |
| 29 | 25 28 | uneq12d | |- ( i = j -> ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) = ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) ) |
| 30 | 29 | adantl | |- ( ( u = s /\ i = j ) -> ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) = ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) ) |
| 31 | fveq2 | |- ( u = s -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 32 | 31 | adantr | |- ( ( u = s /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
| 33 | 30 32 | eleq12d | |- ( ( u = s /\ i = j ) -> ( ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
| 34 | 33 | ralbidv | |- ( ( u = s /\ i = j ) -> ( A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
| 35 | 34 | rabbidv | |- ( ( u = s /\ i = j ) -> { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) |
| 36 | 35 | eqeq2d | |- ( ( u = s /\ i = j ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) |
| 37 | 23 36 | bitrid | |- ( ( u = s /\ i = j ) -> ( y = B <-> y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) |
| 38 | 22 37 | anbi12d | |- ( ( u = s /\ i = j ) -> ( ( x = A.g i ( 1st ` u ) /\ y = B ) <-> ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 39 | 38 | cbvrexdva | |- ( u = s -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) <-> E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 40 | 17 39 | orbi12d | |- ( u = s -> ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) ) |
| 41 | 40 | cbvrexvw | |- ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> E. s e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 42 | fveq2 | |- ( v = r -> ( 1st ` v ) = ( 1st ` r ) ) |
|
| 43 | 19 42 | oveqan12d | |- ( ( u = s /\ v = r ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) |
| 44 | 43 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
| 45 | 2 | eqeq2i | |- ( y = A <-> y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
| 46 | fveq2 | |- ( v = r -> ( 2nd ` v ) = ( 2nd ` r ) ) |
|
| 47 | 31 46 | ineqan12d | |- ( ( u = s /\ v = r ) -> ( ( 2nd ` u ) i^i ( 2nd ` v ) ) = ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) |
| 48 | 47 | difeq2d | |- ( ( u = s /\ v = r ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) |
| 49 | 48 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
| 50 | 45 49 | bitrid | |- ( ( u = s /\ v = r ) -> ( y = A <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
| 51 | 44 50 | anbi12d | |- ( ( u = s /\ v = r ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 52 | 51 | cbvrexdva | |- ( u = s -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. r e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 53 | 52 | cbvrexvw | |- ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. s e. ( S ` N ) E. r e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
| 54 | 41 53 | orbi12i | |- ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) <-> ( E. s e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) \/ E. s e. ( S ` N ) E. r e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 55 | simp-5l | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> Fun ( S ` suc N ) ) |
|
| 56 | eldifi | |- ( s e. ( ( S ` suc N ) \ ( S ` N ) ) -> s e. ( S ` suc N ) ) |
|
| 57 | 56 | adantl | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> s e. ( S ` suc N ) ) |
| 58 | 57 | anim1i | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 59 | 58 | ad2antrr | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 60 | eldifi | |- ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> u e. ( S ` suc N ) ) |
|
| 61 | 60 | adantl | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> u e. ( S ` suc N ) ) |
| 62 | 61 | anim1i | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) |
| 63 | 55 59 62 | 3jca | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) ) |
| 64 | id | |- ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
|
| 65 | 2 | eqeq2i | |- ( w = A <-> w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
| 66 | 65 | biimpi | |- ( w = A -> w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
| 67 | 66 | anim2i | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 68 | satffunlem | |- ( ( ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) -> y = w ) |
|
| 69 | 63 64 67 68 | syl3an | |- ( ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) |
| 70 | 69 | 3exp | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 71 | 70 | com23 | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 72 | 71 | rexlimdva | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 73 | eqeq1 | |- ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( x = A.g i ( 1st ` u ) <-> ( ( 1st ` s ) |g ( 1st ` r ) ) = A.g i ( 1st ` u ) ) ) |
|
| 74 | fvex | |- ( 1st ` s ) e. _V |
|
| 75 | fvex | |- ( 1st ` r ) e. _V |
|
| 76 | gonafv | |- ( ( ( 1st ` s ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) |
|
| 77 | 74 75 76 | mp2an | |- ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. |
| 78 | df-goal | |- A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. |
|
| 79 | 77 78 | eqeq12i | |- ( ( ( 1st ` s ) |g ( 1st ` r ) ) = A.g i ( 1st ` u ) <-> <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. = <. 2o , <. i , ( 1st ` u ) >. >. ) |
| 80 | 1oex | |- 1o e. _V |
|
| 81 | opex | |- <. ( 1st ` s ) , ( 1st ` r ) >. e. _V |
|
| 82 | 80 81 | opth | |- ( <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. = <. 2o , <. i , ( 1st ` u ) >. >. <-> ( 1o = 2o /\ <. ( 1st ` s ) , ( 1st ` r ) >. = <. i , ( 1st ` u ) >. ) ) |
| 83 | 1one2o | |- 1o =/= 2o |
|
| 84 | df-ne | |- ( 1o =/= 2o <-> -. 1o = 2o ) |
|
| 85 | pm2.21 | |- ( -. 1o = 2o -> ( 1o = 2o -> y = w ) ) |
|
| 86 | 84 85 | sylbi | |- ( 1o =/= 2o -> ( 1o = 2o -> y = w ) ) |
| 87 | 83 86 | ax-mp | |- ( 1o = 2o -> y = w ) |
| 88 | 87 | adantr | |- ( ( 1o = 2o /\ <. ( 1st ` s ) , ( 1st ` r ) >. = <. i , ( 1st ` u ) >. ) -> y = w ) |
| 89 | 82 88 | sylbi | |- ( <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. = <. 2o , <. i , ( 1st ` u ) >. >. -> y = w ) |
| 90 | 79 89 | sylbi | |- ( ( ( 1st ` s ) |g ( 1st ` r ) ) = A.g i ( 1st ` u ) -> y = w ) |
| 91 | 73 90 | biimtrdi | |- ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( x = A.g i ( 1st ` u ) -> y = w ) ) |
| 92 | 91 | adantr | |- ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( x = A.g i ( 1st ` u ) -> y = w ) ) |
| 93 | 92 | com12 | |- ( x = A.g i ( 1st ` u ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) |
| 94 | 93 | adantr | |- ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) |
| 95 | 94 | a1i | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 96 | 95 | rexlimdva | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 97 | 72 96 | jaod | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 98 | 97 | rexlimdva | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 99 | simp-4l | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> Fun ( S ` suc N ) ) |
|
| 100 | 58 | adantr | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 101 | ssel | |- ( ( S ` N ) C_ ( S ` suc N ) -> ( u e. ( S ` N ) -> u e. ( S ` suc N ) ) ) |
|
| 102 | 101 | ad3antlr | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( u e. ( S ` N ) -> u e. ( S ` suc N ) ) ) |
| 103 | 102 | com12 | |- ( u e. ( S ` N ) -> ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> u e. ( S ` suc N ) ) ) |
| 104 | 103 | adantr | |- ( ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> u e. ( S ` suc N ) ) ) |
| 105 | 104 | impcom | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> u e. ( S ` suc N ) ) |
| 106 | eldifi | |- ( v e. ( ( S ` suc N ) \ ( S ` N ) ) -> v e. ( S ` suc N ) ) |
|
| 107 | 106 | ad2antll | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> v e. ( S ` suc N ) ) |
| 108 | 105 107 | jca | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) |
| 109 | 99 100 108 | 3jca | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) ) |
| 110 | 109 64 67 68 | syl3an | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) |
| 111 | 110 | 3exp | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 112 | 111 | com23 | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 113 | 112 | rexlimdvva | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 114 | 98 113 | jaod | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = w ) ) ) |
| 115 | 114 | com23 | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ r e. ( S ` suc N ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 116 | 115 | rexlimdva | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 117 | eqeq1 | |- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 118 | df-goal | |- A.g j ( 1st ` s ) = <. 2o , <. j , ( 1st ` s ) >. >. |
|
| 119 | fvex | |- ( 1st ` u ) e. _V |
|
| 120 | fvex | |- ( 1st ` v ) e. _V |
|
| 121 | gonafv | |- ( ( ( 1st ` u ) e. _V /\ ( 1st ` v ) e. _V ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
|
| 122 | 119 120 121 | mp2an | |- ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. |
| 123 | 118 122 | eqeq12i | |- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 124 | 2oex | |- 2o e. _V |
|
| 125 | opex | |- <. j , ( 1st ` s ) >. e. _V |
|
| 126 | 124 125 | opth | |- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. <-> ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) ) |
| 127 | 87 | eqcoms | |- ( 2o = 1o -> y = w ) |
| 128 | 127 | adantr | |- ( ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) -> y = w ) |
| 129 | 126 128 | sylbi | |- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. -> y = w ) |
| 130 | 123 129 | sylbi | |- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = w ) |
| 131 | 117 130 | biimtrdi | |- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = w ) ) |
| 132 | 131 | adantr | |- ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = w ) ) |
| 133 | 132 | com12 | |- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) |
| 134 | 133 | adantr | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) |
| 135 | 134 | rexlimivw | |- ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) |
| 136 | 135 | a1i | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 137 | eqeq1 | |- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) ) |
|
| 138 | 78 118 | eqeq12i | |- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. ) |
| 139 | opex | |- <. i , ( 1st ` u ) >. e. _V |
|
| 140 | 124 139 | opth | |- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. <-> ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) ) |
| 141 | vex | |- i e. _V |
|
| 142 | 141 119 | opth | |- ( <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. <-> ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) |
| 143 | 142 | anbi2i | |- ( ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
| 144 | 138 140 143 | 3bitri | |- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
| 145 | 137 144 | bitrdi | |- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
| 146 | 145 | adantl | |- ( ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
| 147 | 56 | a1i | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( s e. ( ( S ` suc N ) \ ( S ` N ) ) -> s e. ( S ` suc N ) ) ) |
| 148 | funfv1st2nd | |- ( ( Fun ( S ` suc N ) /\ s e. ( S ` suc N ) ) -> ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) |
|
| 149 | 148 | ex | |- ( Fun ( S ` suc N ) -> ( s e. ( S ` suc N ) -> ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) ) |
| 150 | 149 | adantr | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( s e. ( S ` suc N ) -> ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) ) |
| 151 | funfv1st2nd | |- ( ( Fun ( S ` suc N ) /\ u e. ( S ` suc N ) ) -> ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) |
|
| 152 | 151 | ex | |- ( Fun ( S ` suc N ) -> ( u e. ( S ` suc N ) -> ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) ) |
| 153 | 152 | adantr | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( u e. ( S ` suc N ) -> ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) ) |
| 154 | fveqeq2 | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) <-> ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` u ) ) ) |
|
| 155 | eqtr2 | |- ( ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 156 | 29 | eqcomd | |- ( i = j -> ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) = ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) ) |
| 157 | 156 | adantl | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) = ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) ) |
| 158 | simpl | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 159 | 158 | eqcomd | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` s ) = ( 2nd ` u ) ) |
| 160 | 157 159 | eleq12d | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
| 161 | 160 | ralbidv | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
| 162 | 161 | rabbidv | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
| 163 | 162 3 | eqtr4di | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = B ) |
| 164 | eqeq12 | |- ( ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ w = B ) -> ( y = w <-> { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = B ) ) |
|
| 165 | 163 164 | syl5ibrcom | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ w = B ) -> y = w ) ) |
| 166 | 165 | exp4b | |- ( ( 2nd ` u ) = ( 2nd ` s ) -> ( i = j -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 167 | 155 166 | syl | |- ( ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( i = j -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 168 | 167 | ex | |- ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` u ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) |
| 169 | 154 168 | biimtrdi | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) ) |
| 170 | 169 | com24 | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( i = j -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) ) |
| 171 | 170 | impcom | |- ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) |
| 172 | 171 | com13 | |- ( ( ( S ` suc N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) |
| 173 | 60 153 172 | syl56 | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) ) |
| 174 | 173 | com23 | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( ( ( S ` suc N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) ) |
| 175 | 147 150 174 | 3syld | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( s e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) ) |
| 176 | 175 | imp | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) |
| 177 | 176 | adantr | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) ) |
| 178 | 177 | imp | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 179 | 178 | adantld | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 180 | 179 | ad2antrr | |- ( ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 181 | 146 180 | sylbid | |- ( ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( w = B -> y = w ) ) ) ) |
| 182 | 181 | impd | |- ( ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( w = B -> y = w ) ) ) |
| 183 | 182 | ex | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( w = B -> y = w ) ) ) ) |
| 184 | 183 | com34 | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( w = B -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) ) |
| 185 | 184 | impd | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 186 | 185 | rexlimdva | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 187 | 136 186 | jaod | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 188 | 187 | rexlimdva | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 189 | 134 | a1i | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 190 | 189 | rexlimdva | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) /\ u e. ( S ` N ) ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 191 | 190 | rexlimdva | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 192 | 188 191 | jaod | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = w ) ) ) |
| 193 | 192 | com23 | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ j e. _om ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 194 | 193 | rexlimdva | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 195 | 116 194 | jaod | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ s e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 196 | 195 | rexlimdva | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( E. s e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 197 | simplll | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) -> Fun ( S ` suc N ) ) |
|
| 198 | ssel | |- ( ( S ` N ) C_ ( S ` suc N ) -> ( s e. ( S ` N ) -> s e. ( S ` suc N ) ) ) |
|
| 199 | 198 | adantrd | |- ( ( S ` N ) C_ ( S ` suc N ) -> ( ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> s e. ( S ` suc N ) ) ) |
| 200 | 199 | adantl | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> s e. ( S ` suc N ) ) ) |
| 201 | 200 | imp | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> s e. ( S ` suc N ) ) |
| 202 | eldifi | |- ( r e. ( ( S ` suc N ) \ ( S ` N ) ) -> r e. ( S ` suc N ) ) |
|
| 203 | 202 | ad2antll | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> r e. ( S ` suc N ) ) |
| 204 | 201 203 | jca | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 205 | 204 | adantr | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 206 | 60 | anim1i | |- ( ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) -> ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) |
| 207 | 206 | adantl | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) -> ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) |
| 208 | 197 205 207 | 3jca | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) -> ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) ) |
| 209 | 208 | adantr | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) /\ ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) ) |
| 210 | simprl | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) /\ ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
|
| 211 | 67 | ad2antll | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) /\ ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 212 | 209 210 211 68 | syl3anc | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) /\ ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> y = w ) |
| 213 | 212 | exp32 | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 214 | 213 | impancom | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( ( u e. ( ( S ` suc N ) \ ( S ` N ) ) /\ v e. ( S ` suc N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 215 | 214 | expdimp | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( v e. ( S ` suc N ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 216 | 215 | rexlimdv | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) |
| 217 | 91 | adantrd | |- ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> y = w ) ) |
| 218 | 217 | adantr | |- ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> y = w ) ) |
| 219 | 218 | ad3antlr | |- ( ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ w = B ) -> y = w ) ) |
| 220 | 219 | rexlimdva | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) -> y = w ) ) |
| 221 | 216 220 | jaod | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> y = w ) ) |
| 222 | 221 | rexlimdva | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) -> y = w ) ) |
| 223 | simplll | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> Fun ( S ` suc N ) ) |
|
| 224 | 204 | adantr | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) ) |
| 225 | 101 | adantl | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( u e. ( S ` N ) -> u e. ( S ` suc N ) ) ) |
| 226 | 225 | adantr | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( u e. ( S ` N ) -> u e. ( S ` suc N ) ) ) |
| 227 | 226 | com12 | |- ( u e. ( S ` N ) -> ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> u e. ( S ` suc N ) ) ) |
| 228 | 227 | adantr | |- ( ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> u e. ( S ` suc N ) ) ) |
| 229 | 228 | impcom | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> u e. ( S ` suc N ) ) |
| 230 | 106 | ad2antll | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> v e. ( S ` suc N ) ) |
| 231 | 229 230 | jca | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) |
| 232 | 223 224 231 | 3jca | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( Fun ( S ` suc N ) /\ ( s e. ( S ` suc N ) /\ r e. ( S ` suc N ) ) /\ ( u e. ( S ` suc N ) /\ v e. ( S ` suc N ) ) ) ) |
| 233 | 232 64 67 68 | syl3an | |- ( ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) |
| 234 | 233 | 3exp | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 235 | 234 | impancom | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( ( u e. ( S ` N ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) ) |
| 236 | 235 | rexlimdvv | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) -> y = w ) ) |
| 237 | 222 236 | jaod | |- ( ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) |
| 238 | 237 | ex | |- ( ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) /\ ( s e. ( S ` N ) /\ r e. ( ( S ` suc N ) \ ( S ` N ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 239 | 238 | rexlimdvva | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( E. s e. ( S ` N ) E. r e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 240 | 196 239 | jaod | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( ( E. s e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. r e. ( S ` suc N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. j , z >. } u. ( a |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) \/ E. s e. ( S ` N ) E. r e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 241 | 54 240 | biimtrid | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) -> y = w ) ) ) |
| 242 | 241 | impd | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> ( ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> y = w ) ) |
| 243 | 242 | alrimivv | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> A. y A. w ( ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> y = w ) ) |
| 244 | eqeq1 | |- ( y = w -> ( y = A <-> w = A ) ) |
|
| 245 | 244 | anbi2d | |- ( y = w -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) |
| 246 | 245 | rexbidv | |- ( y = w -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) |
| 247 | eqeq1 | |- ( y = w -> ( y = B <-> w = B ) ) |
|
| 248 | 247 | anbi2d | |- ( y = w -> ( ( x = A.g i ( 1st ` u ) /\ y = B ) <-> ( x = A.g i ( 1st ` u ) /\ w = B ) ) ) |
| 249 | 248 | rexbidv | |- ( y = w -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) ) |
| 250 | 246 249 | orbi12d | |- ( y = w -> ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) ) ) |
| 251 | 250 | rexbidv | |- ( y = w -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) ) ) |
| 252 | 245 | 2rexbidv | |- ( y = w -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) |
| 253 | 251 252 | orbi12d | |- ( y = w -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) <-> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) ) |
| 254 | 253 | mo4 | |- ( E* y ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) <-> A. y A. w ( ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = A ) ) ) -> y = w ) ) |
| 255 | 243 254 | sylibr | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> E* y ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
| 256 | 255 | alrimiv | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> A. x E* y ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
| 257 | funopab | |- ( Fun { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } <-> A. x E* y ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
|
| 258 | 256 257 | sylibr | |- ( ( Fun ( S ` suc N ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) |