This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funopab | |- ( Fun { <. x , y >. | ph } <-> A. x E* y ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv | |- Rel { <. x , y >. | ph } |
|
| 2 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 3 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 4 | 2 3 | dffun6f | |- ( Fun { <. x , y >. | ph } <-> ( Rel { <. x , y >. | ph } /\ A. x E* y x { <. x , y >. | ph } y ) ) |
| 5 | 1 4 | mpbiran | |- ( Fun { <. x , y >. | ph } <-> A. x E* y x { <. x , y >. | ph } y ) |
| 6 | df-br | |- ( x { <. x , y >. | ph } y <-> <. x , y >. e. { <. x , y >. | ph } ) |
|
| 7 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 8 | 6 7 | bitri | |- ( x { <. x , y >. | ph } y <-> ph ) |
| 9 | 8 | mobii | |- ( E* y x { <. x , y >. | ph } y <-> E* y ph ) |
| 10 | 9 | albii | |- ( A. x E* y x { <. x , y >. | ph } y <-> A. x E* y ph ) |
| 11 | 5 10 | bitri | |- ( Fun { <. x , y >. | ph } <-> A. x E* y ph ) |