This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for satffun : induction step. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem2 | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun ( ( M Sat E ) ` suc suc N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( M Sat E ) ` suc N ) ) |
|
| 2 | simpr | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W ) ) |
|
| 3 | peano2 | |- ( N e. _om -> suc N e. _om ) |
|
| 4 | 3 | ancri | |- ( N e. _om -> ( suc N e. _om /\ N e. _om ) ) |
| 5 | 4 | adantr | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( suc N e. _om /\ N e. _om ) ) |
| 6 | sssucid | |- N C_ suc N |
|
| 7 | 6 | a1i | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N C_ suc N ) |
| 8 | eqid | |- ( M Sat E ) = ( M Sat E ) |
|
| 9 | 8 | satfsschain | |- ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
| 10 | 9 | imp | |- ( ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) /\ N C_ suc N ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
| 11 | 2 5 7 10 | syl21anc | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
| 12 | eqid | |- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
|
| 13 | eqid | |- { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
|
| 14 | 8 12 13 | satffunlem2lem1 | |- ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) |
| 15 | 14 | expcom | |- ( ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
| 16 | 11 15 | syl | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
| 17 | 16 | imp | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) |
| 18 | 8 12 13 | satffunlem2lem2 | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> ( dom ( ( M Sat E ) ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) = (/) ) |
| 19 | funun | |- ( ( ( Fun ( ( M Sat E ) ` suc N ) /\ Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) /\ ( dom ( ( M Sat E ) ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) = (/) ) -> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
|
| 20 | 1 17 18 19 | syl21anc | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
| 21 | simpl | |- ( ( M e. V /\ E e. W ) -> M e. V ) |
|
| 22 | simpr | |- ( ( M e. V /\ E e. W ) -> E e. W ) |
|
| 23 | simpl | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N e. _om ) |
|
| 24 | 8 12 13 | satfvsucsuc | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` suc suc N ) = ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
| 25 | 21 22 23 24 | syl2an23an | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( M Sat E ) ` suc suc N ) = ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
| 26 | 25 | funeqd | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc suc N ) <-> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) ) |
| 27 | 26 | adantr | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> ( Fun ( ( M Sat E ) ` suc suc N ) <-> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) ) |
| 28 | 20 27 | mpbird | |- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( M Sat E ) ` suc suc N ) ) |
| 29 | 28 | ex | |- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun ( ( M Sat E ) ` suc suc N ) ) ) |