This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | goaleq12d.1 | |- ( ph -> M = N ) |
|
| goaleq12d.2 | |- ( ph -> A = B ) |
||
| Assertion | goaleq12d | |- ( ph -> A.g M A = A.g N B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goaleq12d.1 | |- ( ph -> M = N ) |
|
| 2 | goaleq12d.2 | |- ( ph -> A = B ) |
|
| 3 | df-goal | |- A.g M A = <. 2o , <. M , A >. >. |
|
| 4 | 3 | a1i | |- ( ph -> A.g M A = <. 2o , <. M , A >. >. ) |
| 5 | 1 2 | opeq12d | |- ( ph -> <. M , A >. = <. N , B >. ) |
| 6 | 5 | opeq2d | |- ( ph -> <. 2o , <. M , A >. >. = <. 2o , <. N , B >. >. ) |
| 7 | df-goal | |- A.g N B = <. 2o , <. N , B >. >. |
|
| 8 | 7 | eqcomi | |- <. 2o , <. N , B >. >. = A.g N B |
| 9 | 8 | a1i | |- ( ph -> <. 2o , <. N , B >. >. = A.g N B ) |
| 10 | 6 9 | eqtrd | |- ( ph -> <. 2o , <. M , A >. >. = A.g N B ) |
| 11 | 4 10 | eqtrd | |- ( ph -> A.g M A = A.g N B ) |