This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "Godel-set for the Sheffer stroke NAND" for two formulas A and B . (Contributed by AV, 16-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonafv | |- ( ( A e. V /\ B e. W ) -> ( A |g B ) = <. 1o , <. A , B >. >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | |- ( A |g B ) = ( |g ` <. A , B >. ) |
|
| 2 | opelvvg | |- ( ( A e. V /\ B e. W ) -> <. A , B >. e. ( _V X. _V ) ) |
|
| 3 | opeq2 | |- ( x = <. A , B >. -> <. 1o , x >. = <. 1o , <. A , B >. >. ) |
|
| 4 | df-gona | |- |g = ( x e. ( _V X. _V ) |-> <. 1o , x >. ) |
|
| 5 | opex | |- <. 1o , <. A , B >. >. e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( <. A , B >. e. ( _V X. _V ) -> ( |g ` <. A , B >. ) = <. 1o , <. A , B >. >. ) |
| 7 | 2 6 | syl | |- ( ( A e. V /\ B e. W ) -> ( |g ` <. A , B >. ) = <. 1o , <. A , B >. >. ) |
| 8 | 1 7 | eqtrid | |- ( ( A e. V /\ B e. W ) -> ( A |g B ) = <. 1o , <. A , B >. >. ) |