This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for satffunlem1 . (Contributed by AV, 23-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem1lem2 | |- ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | |- (/) e. _om |
|
| 2 | satfdmfmla | |- ( ( M e. V /\ E e. W /\ (/) e. _om ) -> dom ( ( M Sat E ) ` (/) ) = ( Fmla ` (/) ) ) |
|
| 3 | 1 2 | mp3an3 | |- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = ( Fmla ` (/) ) ) |
| 4 | ovex | |- ( M ^m _om ) e. _V |
|
| 5 | 4 | difexi | |- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V |
| 6 | 5 | a1i | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V ) |
| 7 | 6 | ralrimiva | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V ) |
| 8 | 4 | rabex | |- { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V |
| 9 | 8 | a1i | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ i e. _om ) -> { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) |
| 10 | 9 | ralrimiva | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) |
| 11 | 7 10 | jca | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) ) |
| 12 | 11 | ralrimiva | |- ( ( M e. V /\ E e. W ) -> A. u e. ( ( M Sat E ) ` (/) ) ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) ) |
| 13 | dmopab2rex | |- ( A. u e. ( ( M Sat E ) ` (/) ) ( A. v e. ( ( M Sat E ) ` (/) ) ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V /\ A. i e. _om { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) |
|
| 14 | 12 13 | syl | |- ( ( M e. V /\ E e. W ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) |
| 15 | satfrel | |- ( ( M e. V /\ E e. W /\ (/) e. _om ) -> Rel ( ( M Sat E ) ` (/) ) ) |
|
| 16 | 1 15 | mp3an3 | |- ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) |
| 17 | 1stdm | |- ( ( Rel ( ( M Sat E ) ` (/) ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` (/) ) ) |
|
| 18 | 16 17 | sylan | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` (/) ) ) |
| 19 | 2 | eqcomd | |- ( ( M e. V /\ E e. W /\ (/) e. _om ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) |
| 20 | 1 19 | mp3an3 | |- ( ( M e. V /\ E e. W ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) |
| 21 | 20 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) |
| 22 | 18 21 | eleqtrrd | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` u ) e. ( Fmla ` (/) ) ) |
| 23 | 22 | adantr | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( 1st ` u ) e. ( Fmla ` (/) ) ) |
| 24 | oveq1 | |- ( f = ( 1st ` u ) -> ( f |g g ) = ( ( 1st ` u ) |g g ) ) |
|
| 25 | 24 | eqeq2d | |- ( f = ( 1st ` u ) -> ( x = ( f |g g ) <-> x = ( ( 1st ` u ) |g g ) ) ) |
| 26 | 25 | rexbidv | |- ( f = ( 1st ` u ) -> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) <-> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) |
| 27 | eqidd | |- ( f = ( 1st ` u ) -> i = i ) |
|
| 28 | id | |- ( f = ( 1st ` u ) -> f = ( 1st ` u ) ) |
|
| 29 | 27 28 | goaleq12d | |- ( f = ( 1st ` u ) -> A.g i f = A.g i ( 1st ` u ) ) |
| 30 | 29 | eqeq2d | |- ( f = ( 1st ` u ) -> ( x = A.g i f <-> x = A.g i ( 1st ` u ) ) ) |
| 31 | 30 | rexbidv | |- ( f = ( 1st ` u ) -> ( E. i e. _om x = A.g i f <-> E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 32 | 26 31 | orbi12d | |- ( f = ( 1st ` u ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 33 | 32 | adantl | |- ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) /\ f = ( 1st ` u ) ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 34 | 1stdm | |- ( ( Rel ( ( M Sat E ) ` (/) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` (/) ) ) |
|
| 35 | 16 34 | sylan | |- ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` (/) ) ) |
| 36 | 20 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) |
| 37 | 35 36 | eleqtrrd | |- ( ( ( M e. V /\ E e. W ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( 1st ` v ) e. ( Fmla ` (/) ) ) |
| 38 | 37 | ad4ant13 | |- ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( Fmla ` (/) ) ) |
| 39 | oveq2 | |- ( g = ( 1st ` v ) -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
|
| 40 | 39 | eqeq2d | |- ( g = ( 1st ` v ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 41 | 40 | adantl | |- ( ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 42 | simpr | |- ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
|
| 43 | 38 41 42 | rspcedvd | |- ( ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) |
| 44 | 43 | ex | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ v e. ( ( M Sat E ) ` (/) ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) |
| 45 | 44 | rexlimdva | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) ) ) |
| 46 | 45 | orim1d | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 47 | 46 | imp | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 48 | 23 33 47 | rspcedvd | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) |
| 49 | 48 | ex | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 50 | 49 | rexlimdva | |- ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 51 | releldm2 | |- ( Rel ( ( M Sat E ) ` (/) ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f ) ) |
|
| 52 | 16 51 | syl | |- ( ( M e. V /\ E e. W ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f ) ) |
| 53 | 3 | eleq2d | |- ( ( M e. V /\ E e. W ) -> ( f e. dom ( ( M Sat E ) ` (/) ) <-> f e. ( Fmla ` (/) ) ) ) |
| 54 | 52 53 | bitr3d | |- ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f <-> f e. ( Fmla ` (/) ) ) ) |
| 55 | r19.41v | |- ( E. u e. ( ( M Sat E ) ` (/) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) <-> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
|
| 56 | oveq1 | |- ( ( 1st ` u ) = f -> ( ( 1st ` u ) |g g ) = ( f |g g ) ) |
|
| 57 | 56 | eqeq2d | |- ( ( 1st ` u ) = f -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( f |g g ) ) ) |
| 58 | 57 | rexbidv | |- ( ( 1st ` u ) = f -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( Fmla ` (/) ) x = ( f |g g ) ) ) |
| 59 | eqidd | |- ( ( 1st ` u ) = f -> i = i ) |
|
| 60 | id | |- ( ( 1st ` u ) = f -> ( 1st ` u ) = f ) |
|
| 61 | 59 60 | goaleq12d | |- ( ( 1st ` u ) = f -> A.g i ( 1st ` u ) = A.g i f ) |
| 62 | 61 | eqeq2d | |- ( ( 1st ` u ) = f -> ( x = A.g i ( 1st ` u ) <-> x = A.g i f ) ) |
| 63 | 62 | rexbidv | |- ( ( 1st ` u ) = f -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om x = A.g i f ) ) |
| 64 | 58 63 | orbi12d | |- ( ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 65 | 64 | adantl | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 66 | 3 | eqcomd | |- ( ( M e. V /\ E e. W ) -> ( Fmla ` (/) ) = dom ( ( M Sat E ) ` (/) ) ) |
| 67 | 66 | eleq2d | |- ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) <-> g e. dom ( ( M Sat E ) ` (/) ) ) ) |
| 68 | releldm2 | |- ( Rel ( ( M Sat E ) ` (/) ) -> ( g e. dom ( ( M Sat E ) ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) |
|
| 69 | 16 68 | syl | |- ( ( M e. V /\ E e. W ) -> ( g e. dom ( ( M Sat E ) ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) |
| 70 | 67 69 | bitrd | |- ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) <-> E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g ) ) |
| 71 | r19.41v | |- ( E. v e. ( ( M Sat E ) ` (/) ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) |
|
| 72 | 39 | eqcoms | |- ( ( 1st ` v ) = g -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 73 | 72 | eqeq2d | |- ( ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 74 | 73 | biimpa | |- ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 75 | 74 | a1i | |- ( ( M e. V /\ E e. W ) -> ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 76 | 75 | reximdv | |- ( ( M e. V /\ E e. W ) -> ( E. v e. ( ( M Sat E ) ` (/) ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 77 | 71 76 | biimtrrid | |- ( ( M e. V /\ E e. W ) -> ( ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 78 | 77 | expd | |- ( ( M e. V /\ E e. W ) -> ( E. v e. ( ( M Sat E ) ` (/) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 79 | 70 78 | sylbid | |- ( ( M e. V /\ E e. W ) -> ( g e. ( Fmla ` (/) ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 80 | 79 | rexlimdv | |- ( ( M e. V /\ E e. W ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 81 | 80 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 82 | 81 | adantr | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 83 | 82 | orim1d | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 84 | 65 83 | sylbird | |- ( ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 85 | 84 | expimpd | |- ( ( ( M e. V /\ E e. W ) /\ u e. ( ( M Sat E ) ` (/) ) ) -> ( ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 86 | 85 | reximdva | |- ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 87 | 55 86 | biimtrrid | |- ( ( M e. V /\ E e. W ) -> ( ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 88 | 87 | expd | |- ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 89 | 54 88 | sylbird | |- ( ( M e. V /\ E e. W ) -> ( f e. ( Fmla ` (/) ) -> ( ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 90 | 89 | rexlimdv | |- ( ( M e. V /\ E e. W ) -> ( E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 91 | 50 90 | impbid | |- ( ( M e. V /\ E e. W ) -> ( E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 92 | 91 | abbidv | |- ( ( M e. V /\ E e. W ) -> { x | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } = { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) |
| 93 | 14 92 | eqtrd | |- ( ( M e. V /\ E e. W ) -> dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) |
| 94 | 3 93 | ineq12d | |- ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( ( Fmla ` (/) ) i^i { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) ) |
| 95 | fmla0disjsuc | |- ( ( Fmla ` (/) ) i^i { x | E. f e. ( Fmla ` (/) ) ( E. g e. ( Fmla ` (/) ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) } ) = (/) |
|
| 96 | 94 95 | eqtrdi | |- ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = (/) ) |