This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for satffun : induction basis. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem1 | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0fun | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` (/) ) ) |
|
| 2 | satffunlem1lem1 | |- ( Fun ( ( M Sat E ) ` (/) ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
|
| 3 | 1 2 | syl | |- ( ( M e. V /\ E e. W ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
| 4 | satffunlem1lem2 | |- ( ( M e. V /\ E e. W ) -> ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = (/) ) |
|
| 5 | funun | |- ( ( ( Fun ( ( M Sat E ) ` (/) ) /\ Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) /\ ( dom ( ( M Sat E ) ` (/) ) i^i dom { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = (/) ) -> Fun ( ( ( M Sat E ) ` (/) ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
|
| 6 | 1 3 4 5 | syl21anc | |- ( ( M e. V /\ E e. W ) -> Fun ( ( ( M Sat E ) ` (/) ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 7 | peano1 | |- (/) e. _om |
|
| 8 | eqid | |- ( M Sat E ) = ( M Sat E ) |
|
| 9 | 8 | satfvsuc | |- ( ( M e. V /\ E e. W /\ (/) e. _om ) -> ( ( M Sat E ) ` suc (/) ) = ( ( ( M Sat E ) ` (/) ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 10 | 7 9 | mp3an3 | |- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` suc (/) ) = ( ( ( M Sat E ) ` (/) ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 11 | 10 | funeqd | |- ( ( M e. V /\ E e. W ) -> ( Fun ( ( M Sat E ) ` suc (/) ) <-> Fun ( ( ( M Sat E ) ` (/) ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` (/) ) ( E. v e. ( ( M Sat E ) ` (/) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
| 12 | 6 11 | mpbird | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) |