This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldm2 | |- ( Rel A -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( B e. dom A -> B e. _V ) |
|
| 2 | 1 | anim2i | |- ( ( Rel A /\ B e. dom A ) -> ( Rel A /\ B e. _V ) ) |
| 3 | id | |- ( ( 1st ` x ) = B -> ( 1st ` x ) = B ) |
|
| 4 | fvex | |- ( 1st ` x ) e. _V |
|
| 5 | 3 4 | eqeltrrdi | |- ( ( 1st ` x ) = B -> B e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. x e. A ( 1st ` x ) = B -> B e. _V ) |
| 7 | 6 | anim2i | |- ( ( Rel A /\ E. x e. A ( 1st ` x ) = B ) -> ( Rel A /\ B e. _V ) ) |
| 8 | eldm2g | |- ( B e. _V -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) |
|
| 9 | 8 | adantl | |- ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) |
| 10 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 11 | ssel | |- ( A C_ ( _V X. _V ) -> ( x e. A -> x e. ( _V X. _V ) ) ) |
|
| 12 | 10 11 | sylbi | |- ( Rel A -> ( x e. A -> x e. ( _V X. _V ) ) ) |
| 13 | 12 | imp | |- ( ( Rel A /\ x e. A ) -> x e. ( _V X. _V ) ) |
| 14 | op1steq | |- ( x e. ( _V X. _V ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) |
|
| 15 | 13 14 | syl | |- ( ( Rel A /\ x e. A ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) |
| 16 | 15 | rexbidva | |- ( Rel A -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) |
| 17 | 16 | adantr | |- ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) |
| 18 | rexcom4 | |- ( E. x e. A E. y x = <. B , y >. <-> E. y E. x e. A x = <. B , y >. ) |
|
| 19 | risset | |- ( <. B , y >. e. A <-> E. x e. A x = <. B , y >. ) |
|
| 20 | 19 | exbii | |- ( E. y <. B , y >. e. A <-> E. y E. x e. A x = <. B , y >. ) |
| 21 | 18 20 | bitr4i | |- ( E. x e. A E. y x = <. B , y >. <-> E. y <. B , y >. e. A ) |
| 22 | 17 21 | bitrdi | |- ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. y <. B , y >. e. A ) ) |
| 23 | 9 22 | bitr4d | |- ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |
| 24 | 2 7 23 | pm5.21nd | |- ( Rel A -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |