This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmla0disjsuc | |- ( ( Fmla ` (/) ) i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. j e. _om E. k e. _om x = ( j e.g k ) } |
|
| 2 | rabab | |- { x e. _V | E. j e. _om E. k e. _om x = ( j e.g k ) } = { x | E. j e. _om E. k e. _om x = ( j e.g k ) } |
|
| 3 | 1 2 | eqtri | |- ( Fmla ` (/) ) = { x | E. j e. _om E. k e. _om x = ( j e.g k ) } |
| 4 | 3 | ineq1i | |- ( ( Fmla ` (/) ) i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) = ( { x | E. j e. _om E. k e. _om x = ( j e.g k ) } i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) |
| 5 | inab | |- ( { x | E. j e. _om E. k e. _om x = ( j e.g k ) } i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) = { x | ( E. j e. _om E. k e. _om x = ( j e.g k ) /\ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) } |
|
| 6 | goel | |- ( ( j e. _om /\ k e. _om ) -> ( j e.g k ) = <. (/) , <. j , k >. >. ) |
|
| 7 | 6 | eqeq2d | |- ( ( j e. _om /\ k e. _om ) -> ( x = ( j e.g k ) <-> x = <. (/) , <. j , k >. >. ) ) |
| 8 | 1n0 | |- 1o =/= (/) |
|
| 9 | 8 | nesymi | |- -. (/) = 1o |
| 10 | 9 | intnanr | |- -. ( (/) = 1o /\ <. j , k >. = <. u , v >. ) |
| 11 | gonafv | |- ( ( u e. _V /\ v e. _V ) -> ( u |g v ) = <. 1o , <. u , v >. >. ) |
|
| 12 | 11 | el2v | |- ( u |g v ) = <. 1o , <. u , v >. >. |
| 13 | 12 | eqeq2i | |- ( <. (/) , <. j , k >. >. = ( u |g v ) <-> <. (/) , <. j , k >. >. = <. 1o , <. u , v >. >. ) |
| 14 | 0ex | |- (/) e. _V |
|
| 15 | opex | |- <. j , k >. e. _V |
|
| 16 | 14 15 | opth | |- ( <. (/) , <. j , k >. >. = <. 1o , <. u , v >. >. <-> ( (/) = 1o /\ <. j , k >. = <. u , v >. ) ) |
| 17 | 13 16 | bitri | |- ( <. (/) , <. j , k >. >. = ( u |g v ) <-> ( (/) = 1o /\ <. j , k >. = <. u , v >. ) ) |
| 18 | 10 17 | mtbir | |- -. <. (/) , <. j , k >. >. = ( u |g v ) |
| 19 | eqeq1 | |- ( x = <. (/) , <. j , k >. >. -> ( x = ( u |g v ) <-> <. (/) , <. j , k >. >. = ( u |g v ) ) ) |
|
| 20 | 18 19 | mtbiri | |- ( x = <. (/) , <. j , k >. >. -> -. x = ( u |g v ) ) |
| 21 | 7 20 | biimtrdi | |- ( ( j e. _om /\ k e. _om ) -> ( x = ( j e.g k ) -> -. x = ( u |g v ) ) ) |
| 22 | 21 | imp | |- ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) -> -. x = ( u |g v ) ) |
| 23 | 22 | adantr | |- ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) -> -. x = ( u |g v ) ) |
| 24 | 23 | ralrimivw | |- ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) -> A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) ) |
| 25 | 2on0 | |- 2o =/= (/) |
|
| 26 | 25 | nesymi | |- -. (/) = 2o |
| 27 | 26 | orci | |- ( -. (/) = 2o \/ -. <. j , k >. = <. i , u >. ) |
| 28 | 14 15 | opth | |- ( <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. <-> ( (/) = 2o /\ <. j , k >. = <. i , u >. ) ) |
| 29 | 28 | notbii | |- ( -. <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. <-> -. ( (/) = 2o /\ <. j , k >. = <. i , u >. ) ) |
| 30 | ianor | |- ( -. ( (/) = 2o /\ <. j , k >. = <. i , u >. ) <-> ( -. (/) = 2o \/ -. <. j , k >. = <. i , u >. ) ) |
|
| 31 | 29 30 | bitri | |- ( -. <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. <-> ( -. (/) = 2o \/ -. <. j , k >. = <. i , u >. ) ) |
| 32 | 27 31 | mpbir | |- -. <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. |
| 33 | eqeq1 | |- ( x = <. (/) , <. j , k >. >. -> ( x = A.g i u <-> <. (/) , <. j , k >. >. = A.g i u ) ) |
|
| 34 | df-goal | |- A.g i u = <. 2o , <. i , u >. >. |
|
| 35 | 34 | eqeq2i | |- ( <. (/) , <. j , k >. >. = A.g i u <-> <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. ) |
| 36 | 33 35 | bitrdi | |- ( x = <. (/) , <. j , k >. >. -> ( x = A.g i u <-> <. (/) , <. j , k >. >. = <. 2o , <. i , u >. >. ) ) |
| 37 | 32 36 | mtbiri | |- ( x = <. (/) , <. j , k >. >. -> -. x = A.g i u ) |
| 38 | 7 37 | biimtrdi | |- ( ( j e. _om /\ k e. _om ) -> ( x = ( j e.g k ) -> -. x = A.g i u ) ) |
| 39 | 38 | imp | |- ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) -> -. x = A.g i u ) |
| 40 | 39 | adantr | |- ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) -> -. x = A.g i u ) |
| 41 | 40 | adantr | |- ( ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) /\ i e. _om ) -> -. x = A.g i u ) |
| 42 | 41 | ralrimiva | |- ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) -> A. i e. _om -. x = A.g i u ) |
| 43 | 24 42 | jca | |- ( ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) /\ u e. ( Fmla ` (/) ) ) -> ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) ) |
| 44 | 43 | ralrimiva | |- ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) -> A. u e. ( Fmla ` (/) ) ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) ) |
| 45 | ralnex | |- ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) <-> -. E. v e. ( Fmla ` (/) ) x = ( u |g v ) ) |
|
| 46 | ralnex | |- ( A. i e. _om -. x = A.g i u <-> -. E. i e. _om x = A.g i u ) |
|
| 47 | 45 46 | anbi12i | |- ( ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) <-> ( -. E. v e. ( Fmla ` (/) ) x = ( u |g v ) /\ -. E. i e. _om x = A.g i u ) ) |
| 48 | ioran | |- ( -. ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> ( -. E. v e. ( Fmla ` (/) ) x = ( u |g v ) /\ -. E. i e. _om x = A.g i u ) ) |
|
| 49 | 47 48 | bitr4i | |- ( ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) <-> -. ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 50 | 49 | ralbii | |- ( A. u e. ( Fmla ` (/) ) ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) <-> A. u e. ( Fmla ` (/) ) -. ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 51 | ralnex | |- ( A. u e. ( Fmla ` (/) ) -. ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
|
| 52 | 50 51 | bitri | |- ( A. u e. ( Fmla ` (/) ) ( A. v e. ( Fmla ` (/) ) -. x = ( u |g v ) /\ A. i e. _om -. x = A.g i u ) <-> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 53 | 44 52 | sylib | |- ( ( ( j e. _om /\ k e. _om ) /\ x = ( j e.g k ) ) -> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 54 | 53 | ex | |- ( ( j e. _om /\ k e. _om ) -> ( x = ( j e.g k ) -> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 55 | 54 | rexlimdva | |- ( j e. _om -> ( E. k e. _om x = ( j e.g k ) -> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 56 | 55 | rexlimiv | |- ( E. j e. _om E. k e. _om x = ( j e.g k ) -> -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 57 | 56 | imori | |- ( -. E. j e. _om E. k e. _om x = ( j e.g k ) \/ -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 58 | ianor | |- ( -. ( E. j e. _om E. k e. _om x = ( j e.g k ) /\ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) <-> ( -. E. j e. _om E. k e. _om x = ( j e.g k ) \/ -. E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
|
| 59 | 57 58 | mpbir | |- -. ( E. j e. _om E. k e. _om x = ( j e.g k ) /\ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 60 | 59 | abf | |- { x | ( E. j e. _om E. k e. _om x = ( j e.g k ) /\ E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) } = (/) |
| 61 | 5 60 | eqtri | |- ( { x | E. j e. _om E. k e. _om x = ( j e.g k ) } i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) = (/) |
| 62 | 4 61 | eqtri | |- ( ( Fmla ` (/) ) i^i { x | E. u e. ( Fmla ` (/) ) ( E. v e. ( Fmla ` (/) ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) = (/) |