This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is the set of valid Godel formulas of height N . (Contributed by AV, 13-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfdmfmla | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | 1 1 | pm3.2i | |- ( (/) e. _V /\ (/) e. _V ) |
| 3 | 2 | jctr | |- ( ( M e. V /\ E e. W ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) |
| 4 | 3 | 3adant3 | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) |
| 5 | satfdm | |- ( ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
|
| 6 | 4 5 | syl | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
| 7 | fveq2 | |- ( n = N -> ( ( M Sat E ) ` n ) = ( ( M Sat E ) ` N ) ) |
|
| 8 | 7 | dmeqd | |- ( n = N -> dom ( ( M Sat E ) ` n ) = dom ( ( M Sat E ) ` N ) ) |
| 9 | fveq2 | |- ( n = N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` N ) ) |
|
| 10 | 9 | dmeqd | |- ( n = N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 11 | 8 10 | eqeq12d | |- ( n = N -> ( dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) <-> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
| 12 | 11 | rspcv | |- ( N e. _om -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
| 14 | 6 13 | mpd | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 15 | elelsuc | |- ( N e. _om -> N e. suc _om ) |
|
| 16 | 15 | 3ad2ant3 | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> N e. suc _om ) |
| 17 | fmlafv | |- ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
|
| 18 | 16 17 | syl | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 19 | 14 18 | eqtr4d | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |