This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for satffunlem1 . (Contributed by AV, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem1lem1 | |- ( Fun ( ( M Sat E ) ` N ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( u = s -> ( 1st ` u ) = ( 1st ` s ) ) |
|
| 2 | fveq2 | |- ( v = r -> ( 1st ` v ) = ( 1st ` r ) ) |
|
| 3 | 1 2 | oveqan12d | |- ( ( u = s /\ v = r ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) |
| 4 | 3 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
| 5 | fveq2 | |- ( u = s -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 6 | fveq2 | |- ( v = r -> ( 2nd ` v ) = ( 2nd ` r ) ) |
|
| 7 | 5 6 | ineqan12d | |- ( ( u = s /\ v = r ) -> ( ( 2nd ` u ) i^i ( 2nd ` v ) ) = ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) |
| 8 | 7 | difeq2d | |- ( ( u = s /\ v = r ) -> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) |
| 9 | 8 | eqeq2d | |- ( ( u = s /\ v = r ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) |
| 10 | 4 9 | anbi12d | |- ( ( u = s /\ v = r ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 11 | 10 | cbvrexdva | |- ( u = s -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) ) |
| 12 | simpr | |- ( ( u = s /\ i = j ) -> i = j ) |
|
| 13 | 1 | adantr | |- ( ( u = s /\ i = j ) -> ( 1st ` u ) = ( 1st ` s ) ) |
| 14 | 12 13 | goaleq12d | |- ( ( u = s /\ i = j ) -> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) |
| 15 | 14 | eqeq2d | |- ( ( u = s /\ i = j ) -> ( x = A.g i ( 1st ` u ) <-> x = A.g j ( 1st ` s ) ) ) |
| 16 | opeq1 | |- ( i = j -> <. i , k >. = <. j , k >. ) |
|
| 17 | 16 | sneqd | |- ( i = j -> { <. i , k >. } = { <. j , k >. } ) |
| 18 | sneq | |- ( i = j -> { i } = { j } ) |
|
| 19 | 18 | difeq2d | |- ( i = j -> ( _om \ { i } ) = ( _om \ { j } ) ) |
| 20 | 19 | reseq2d | |- ( i = j -> ( f |` ( _om \ { i } ) ) = ( f |` ( _om \ { j } ) ) ) |
| 21 | 17 20 | uneq12d | |- ( i = j -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) |
| 22 | 21 | adantl | |- ( ( u = s /\ i = j ) -> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) = ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) ) |
| 23 | 5 | adantr | |- ( ( u = s /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
| 24 | 22 23 | eleq12d | |- ( ( u = s /\ i = j ) -> ( ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
| 25 | 24 | ralbidv | |- ( ( u = s /\ i = j ) -> ( A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) <-> A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) ) ) |
| 26 | 25 | rabbidv | |- ( ( u = s /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) |
| 27 | 26 | eqeq2d | |- ( ( u = s /\ i = j ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) |
| 28 | 15 27 | anbi12d | |- ( ( u = s /\ i = j ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 29 | 28 | cbvrexdva | |- ( u = s -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 30 | 11 29 | orbi12d | |- ( u = s -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) ) |
| 31 | 30 | cbvrexvw | |- ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) ) |
| 32 | simp-4l | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> Fun ( ( M Sat E ) ` N ) ) |
|
| 33 | simpr | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> u e. ( ( M Sat E ) ` N ) ) |
|
| 34 | 33 | anim1i | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) ) |
| 35 | simpr | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> s e. ( ( M Sat E ) ` N ) ) |
|
| 36 | 35 | anim1i | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) |
| 38 | satffunlem | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> z = y ) |
|
| 39 | 38 | eqcomd | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) /\ ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) ) -> y = z ) |
| 40 | 39 | 3exp | |- ( ( Fun ( ( M Sat E ) ` N ) /\ ( u e. ( ( M Sat E ) ` N ) /\ v e. ( ( M Sat E ) ` N ) ) /\ ( s e. ( ( M Sat E ) ` N ) /\ r e. ( ( M Sat E ) ` N ) ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 41 | 32 34 37 40 | syl3anc | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 42 | 41 | rexlimdva | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 43 | eqeq1 | |- ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) ) ) |
|
| 44 | df-goal | |- A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. |
|
| 45 | fvex | |- ( 1st ` s ) e. _V |
|
| 46 | fvex | |- ( 1st ` r ) e. _V |
|
| 47 | gonafv | |- ( ( ( 1st ` s ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) |
|
| 48 | 45 46 47 | mp2an | |- ( ( 1st ` s ) |g ( 1st ` r ) ) = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. |
| 49 | 44 48 | eqeq12i | |- ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. ) |
| 50 | 2oex | |- 2o e. _V |
|
| 51 | opex | |- <. i , ( 1st ` u ) >. e. _V |
|
| 52 | 50 51 | opth | |- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. <-> ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) ) |
| 53 | 1one2o | |- 1o =/= 2o |
|
| 54 | df-ne | |- ( 1o =/= 2o <-> -. 1o = 2o ) |
|
| 55 | pm2.21 | |- ( -. 1o = 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
|
| 56 | 54 55 | sylbi | |- ( 1o =/= 2o -> ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
| 57 | 53 56 | ax-mp | |- ( 1o = 2o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
| 58 | 57 | eqcoms | |- ( 2o = 1o -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
| 59 | 58 | adantr | |- ( ( 2o = 1o /\ <. i , ( 1st ` u ) >. = <. ( 1st ` s ) , ( 1st ` r ) >. ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
| 60 | 52 59 | sylbi | |- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 1o , <. ( 1st ` s ) , ( 1st ` r ) >. >. -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
| 61 | 49 60 | sylbi | |- ( A.g i ( 1st ` u ) = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) |
| 62 | 43 61 | biimtrdi | |- ( x = A.g i ( 1st ` u ) -> ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) -> y = z ) ) ) |
| 63 | 62 | impd | |- ( x = A.g i ( 1st ` u ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) |
| 64 | 63 | adantr | |- ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) |
| 65 | 64 | a1i | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 66 | 65 | rexlimdva | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 67 | 42 66 | jaod | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 68 | 67 | rexlimdva | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> y = z ) ) ) |
| 69 | 68 | com23 | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ r e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 70 | 69 | rexlimdva | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 71 | eqeq1 | |- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 72 | df-goal | |- A.g j ( 1st ` s ) = <. 2o , <. j , ( 1st ` s ) >. >. |
|
| 73 | fvex | |- ( 1st ` u ) e. _V |
|
| 74 | fvex | |- ( 1st ` v ) e. _V |
|
| 75 | gonafv | |- ( ( ( 1st ` u ) e. _V /\ ( 1st ` v ) e. _V ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
|
| 76 | 73 74 75 | mp2an | |- ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. |
| 77 | 72 76 | eqeq12i | |- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 78 | opex | |- <. j , ( 1st ` s ) >. e. _V |
|
| 79 | 50 78 | opth | |- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. <-> ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) ) |
| 80 | pm2.21 | |- ( -. 1o = 2o -> ( 1o = 2o -> y = z ) ) |
|
| 81 | 54 80 | sylbi | |- ( 1o =/= 2o -> ( 1o = 2o -> y = z ) ) |
| 82 | 53 81 | ax-mp | |- ( 1o = 2o -> y = z ) |
| 83 | 82 | eqcoms | |- ( 2o = 1o -> y = z ) |
| 84 | 83 | adantr | |- ( ( 2o = 1o /\ <. j , ( 1st ` s ) >. = <. ( 1st ` u ) , ( 1st ` v ) >. ) -> y = z ) |
| 85 | 79 84 | sylbi | |- ( <. 2o , <. j , ( 1st ` s ) >. >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. -> y = z ) |
| 86 | 77 85 | sylbi | |- ( A.g j ( 1st ` s ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) |
| 87 | 71 86 | biimtrdi | |- ( x = A.g j ( 1st ` s ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) |
| 88 | 87 | adantr | |- ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> y = z ) ) |
| 89 | 88 | com12 | |- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) |
| 90 | 89 | adantr | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) |
| 91 | 90 | a1i | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ v e. ( ( M Sat E ) ` N ) ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 92 | 91 | rexlimdva | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 93 | eqeq1 | |- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> A.g i ( 1st ` u ) = A.g j ( 1st ` s ) ) ) |
|
| 94 | 44 72 | eqeq12i | |- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. ) |
| 95 | 50 51 | opth | |- ( <. 2o , <. i , ( 1st ` u ) >. >. = <. 2o , <. j , ( 1st ` s ) >. >. <-> ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) ) |
| 96 | vex | |- i e. _V |
|
| 97 | 96 73 | opth | |- ( <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. <-> ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) |
| 98 | 97 | anbi2i | |- ( ( 2o = 2o /\ <. i , ( 1st ` u ) >. = <. j , ( 1st ` s ) >. ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
| 99 | 94 95 98 | 3bitri | |- ( A.g i ( 1st ` u ) = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) |
| 100 | 93 99 | bitrdi | |- ( x = A.g i ( 1st ` u ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
| 101 | 100 | adantl | |- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) <-> ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) ) ) |
| 102 | funfv1st2nd | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) |
|
| 103 | 102 | ex | |- ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) ) |
| 104 | funfv1st2nd | |- ( ( Fun ( ( M Sat E ) ` N ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) |
|
| 105 | 104 | ex | |- ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) ) ) |
| 106 | fveqeq2 | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) <-> ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) ) ) |
|
| 107 | eqtr2 | |- ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 108 | opeq1 | |- ( j = i -> <. j , k >. = <. i , k >. ) |
|
| 109 | 108 | sneqd | |- ( j = i -> { <. j , k >. } = { <. i , k >. } ) |
| 110 | sneq | |- ( j = i -> { j } = { i } ) |
|
| 111 | 110 | difeq2d | |- ( j = i -> ( _om \ { j } ) = ( _om \ { i } ) ) |
| 112 | 111 | reseq2d | |- ( j = i -> ( f |` ( _om \ { j } ) ) = ( f |` ( _om \ { i } ) ) ) |
| 113 | 109 112 | uneq12d | |- ( j = i -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
| 114 | 113 | eqcoms | |- ( i = j -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
| 115 | 114 | adantl | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) = ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) ) |
| 116 | simpl | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` u ) = ( 2nd ` s ) ) |
|
| 117 | 116 | eqcomd | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( 2nd ` s ) = ( 2nd ` u ) ) |
| 118 | 115 117 | eleq12d | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
| 119 | 118 | ralbidv | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) <-> A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) ) ) |
| 120 | 119 | rabbidv | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
| 121 | eqeq12 | |- ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( y = z <-> { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 122 | 120 121 | syl5ibrcom | |- ( ( ( 2nd ` u ) = ( 2nd ` s ) /\ i = j ) -> ( ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> y = z ) ) |
| 123 | 122 | exp4b | |- ( ( 2nd ` u ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 124 | 107 123 | syl | |- ( ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) /\ ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 125 | 124 | ex | |- ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
| 126 | 106 125 | biimtrdi | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( i = j -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
| 127 | 126 | com24 | |- ( ( 1st ` u ) = ( 1st ` s ) -> ( i = j -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
| 128 | 127 | impcom | |- ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
| 129 | 128 | com13 | |- ( ( ( ( M Sat E ) ` N ) ` ( 1st ` u ) ) = ( 2nd ` u ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
| 130 | 105 129 | syl6 | |- ( Fun ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
| 131 | 130 | com23 | |- ( Fun ( ( M Sat E ) ` N ) -> ( ( ( ( M Sat E ) ` N ) ` ( 1st ` s ) ) = ( 2nd ` s ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
| 132 | 103 131 | syld | |- ( Fun ( ( M Sat E ) ` N ) -> ( s e. ( ( M Sat E ) ` N ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) ) |
| 133 | 132 | imp | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
| 134 | 133 | adantr | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( u e. ( ( M Sat E ) ` N ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) ) |
| 135 | 134 | imp | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 136 | 135 | adantld | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 137 | 136 | ad2antrr | |- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( 2o = 2o /\ ( i = j /\ ( 1st ` u ) = ( 1st ` s ) ) ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 138 | 101 137 | sylbid | |- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( x = A.g j ( 1st ` s ) -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 139 | 138 | impd | |- ( ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) /\ x = A.g i ( 1st ` u ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) |
| 140 | 139 | ex | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> y = z ) ) ) ) |
| 141 | 140 | com34 | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( x = A.g i ( 1st ` u ) -> ( z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) ) |
| 142 | 141 | impd | |- ( ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) /\ i e. _om ) -> ( ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 143 | 142 | rexlimdva | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 144 | 92 143 | jaod | |- ( ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) /\ u e. ( ( M Sat E ) ` N ) ) -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 145 | 144 | rexlimdva | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> y = z ) ) ) |
| 146 | 145 | com23 | |- ( ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) /\ j e. _om ) -> ( ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 147 | 146 | rexlimdva | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 148 | 70 147 | jaod | |- ( ( Fun ( ( M Sat E ) ` N ) /\ s e. ( ( M Sat E ) ` N ) ) -> ( ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 149 | 148 | rexlimdva | |- ( Fun ( ( M Sat E ) ` N ) -> ( E. s e. ( ( M Sat E ) ` N ) ( E. r e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` s ) |g ( 1st ` r ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` s ) i^i ( 2nd ` r ) ) ) ) \/ E. j e. _om ( x = A.g j ( 1st ` s ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. j , k >. } u. ( f |` ( _om \ { j } ) ) ) e. ( 2nd ` s ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 150 | 31 149 | biimtrid | |- ( Fun ( ( M Sat E ) ` N ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> y = z ) ) ) |
| 151 | 150 | impd | |- ( Fun ( ( M Sat E ) ` N ) -> ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
| 152 | 151 | alrimivv | |- ( Fun ( ( M Sat E ) ` N ) -> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
| 153 | eqeq1 | |- ( y = z -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
|
| 154 | 153 | anbi2d | |- ( y = z -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 155 | 154 | rexbidv | |- ( y = z -> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 156 | eqeq1 | |- ( y = z -> ( y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 157 | 156 | anbi2d | |- ( y = z -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 158 | 157 | rexbidv | |- ( y = z -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 159 | 155 158 | orbi12d | |- ( y = z -> ( ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 160 | 159 | rexbidv | |- ( y = z -> ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 161 | 160 | mo4 | |- ( E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> A. y A. z ( ( E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) /\ E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ z = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ z = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> y = z ) ) |
| 162 | 152 161 | sylibr | |- ( Fun ( ( M Sat E ) ` N ) -> E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 163 | 162 | alrimiv | |- ( Fun ( ( M Sat E ) ` N ) -> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 164 | funopab | |- ( Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> A. x E* y E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
|
| 165 | 163 164 | sylibr | |- ( Fun ( ( M Sat E ) ` N ) -> Fun { <. x , y >. | E. u e. ( ( M Sat E ) ` N ) ( E. v e. ( ( M Sat E ) ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. k e. M ( { <. i , k >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |