This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefallfac | |- ( ( X e. CC /\ N e. NN0 ) -> ( X RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u X FallFac N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( X e. CC -> -u X e. CC ) |
|
| 2 | 1 | adantr | |- ( ( X e. CC /\ N e. NN0 ) -> -u X e. CC ) |
| 3 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 4 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 5 | 3 4 | syl | |- ( k e. ( 1 ... N ) -> ( k - 1 ) e. NN0 ) |
| 6 | 5 | nn0cnd | |- ( k e. ( 1 ... N ) -> ( k - 1 ) e. CC ) |
| 7 | subcl | |- ( ( -u X e. CC /\ ( k - 1 ) e. CC ) -> ( -u X - ( k - 1 ) ) e. CC ) |
|
| 8 | 2 6 7 | syl2an | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> ( -u X - ( k - 1 ) ) e. CC ) |
| 9 | 8 | mulm1d | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> ( -u 1 x. ( -u X - ( k - 1 ) ) ) = -u ( -u X - ( k - 1 ) ) ) |
| 10 | simpll | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> X e. CC ) |
|
| 11 | 6 | adantl | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> ( k - 1 ) e. CC ) |
| 12 | 10 11 | negdi2d | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> -u ( X + ( k - 1 ) ) = ( -u X - ( k - 1 ) ) ) |
| 13 | 12 | negeqd | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> -u -u ( X + ( k - 1 ) ) = -u ( -u X - ( k - 1 ) ) ) |
| 14 | simpl | |- ( ( X e. CC /\ N e. NN0 ) -> X e. CC ) |
|
| 15 | addcl | |- ( ( X e. CC /\ ( k - 1 ) e. CC ) -> ( X + ( k - 1 ) ) e. CC ) |
|
| 16 | 14 6 15 | syl2an | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> ( X + ( k - 1 ) ) e. CC ) |
| 17 | 16 | negnegd | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> -u -u ( X + ( k - 1 ) ) = ( X + ( k - 1 ) ) ) |
| 18 | 9 13 17 | 3eqtr2rd | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> ( X + ( k - 1 ) ) = ( -u 1 x. ( -u X - ( k - 1 ) ) ) ) |
| 19 | 18 | prodeq2dv | |- ( ( X e. CC /\ N e. NN0 ) -> prod_ k e. ( 1 ... N ) ( X + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) ( -u 1 x. ( -u X - ( k - 1 ) ) ) ) |
| 20 | risefacval2 | |- ( ( X e. CC /\ N e. NN0 ) -> ( X RiseFac N ) = prod_ k e. ( 1 ... N ) ( X + ( k - 1 ) ) ) |
|
| 21 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 22 | neg1cn | |- -u 1 e. CC |
|
| 23 | fprodconst | |- ( ( ( 1 ... N ) e. Fin /\ -u 1 e. CC ) -> prod_ k e. ( 1 ... N ) -u 1 = ( -u 1 ^ ( # ` ( 1 ... N ) ) ) ) |
|
| 24 | 21 22 23 | mp2an | |- prod_ k e. ( 1 ... N ) -u 1 = ( -u 1 ^ ( # ` ( 1 ... N ) ) ) |
| 25 | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
|
| 26 | 25 | oveq2d | |- ( N e. NN0 -> ( -u 1 ^ ( # ` ( 1 ... N ) ) ) = ( -u 1 ^ N ) ) |
| 27 | 24 26 | eqtr2id | |- ( N e. NN0 -> ( -u 1 ^ N ) = prod_ k e. ( 1 ... N ) -u 1 ) |
| 28 | 27 | adantl | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) = prod_ k e. ( 1 ... N ) -u 1 ) |
| 29 | fallfacval2 | |- ( ( -u X e. CC /\ N e. NN0 ) -> ( -u X FallFac N ) = prod_ k e. ( 1 ... N ) ( -u X - ( k - 1 ) ) ) |
|
| 30 | 1 29 | sylan | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u X FallFac N ) = prod_ k e. ( 1 ... N ) ( -u X - ( k - 1 ) ) ) |
| 31 | 28 30 | oveq12d | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u X FallFac N ) ) = ( prod_ k e. ( 1 ... N ) -u 1 x. prod_ k e. ( 1 ... N ) ( -u X - ( k - 1 ) ) ) ) |
| 32 | fzfid | |- ( ( X e. CC /\ N e. NN0 ) -> ( 1 ... N ) e. Fin ) |
|
| 33 | 22 | a1i | |- ( ( ( X e. CC /\ N e. NN0 ) /\ k e. ( 1 ... N ) ) -> -u 1 e. CC ) |
| 34 | 32 33 8 | fprodmul | |- ( ( X e. CC /\ N e. NN0 ) -> prod_ k e. ( 1 ... N ) ( -u 1 x. ( -u X - ( k - 1 ) ) ) = ( prod_ k e. ( 1 ... N ) -u 1 x. prod_ k e. ( 1 ... N ) ( -u X - ( k - 1 ) ) ) ) |
| 35 | 31 34 | eqtr4d | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u X FallFac N ) ) = prod_ k e. ( 1 ... N ) ( -u 1 x. ( -u X - ( k - 1 ) ) ) ) |
| 36 | 19 20 35 | 3eqtr4d | |- ( ( X e. CC /\ N e. NN0 ) -> ( X RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u X FallFac N ) ) ) |