This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefacval2 | |- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 1 ... N ) ( A + ( k - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risefacval | |- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ n e. ( 0 ... ( N - 1 ) ) ( A + n ) ) |
|
| 2 | 1zzd | |- ( ( A e. CC /\ N e. NN0 ) -> 1 e. ZZ ) |
|
| 3 | 0zd | |- ( ( A e. CC /\ N e. NN0 ) -> 0 e. ZZ ) |
|
| 4 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 5 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 6 | 4 5 | syl | |- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
| 7 | 6 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> ( N - 1 ) e. ZZ ) |
| 8 | simpl | |- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
|
| 9 | elfznn0 | |- ( n e. ( 0 ... ( N - 1 ) ) -> n e. NN0 ) |
|
| 10 | 9 | nn0cnd | |- ( n e. ( 0 ... ( N - 1 ) ) -> n e. CC ) |
| 11 | addcl | |- ( ( A e. CC /\ n e. CC ) -> ( A + n ) e. CC ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( ( A e. CC /\ N e. NN0 ) /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( A + n ) e. CC ) |
| 13 | oveq2 | |- ( n = ( k - 1 ) -> ( A + n ) = ( A + ( k - 1 ) ) ) |
|
| 14 | 2 3 7 12 13 | fprodshft | |- ( ( A e. CC /\ N e. NN0 ) -> prod_ n e. ( 0 ... ( N - 1 ) ) ( A + n ) = prod_ k e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( A + ( k - 1 ) ) ) |
| 15 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 16 | 15 | a1i | |- ( ( A e. CC /\ N e. NN0 ) -> ( 0 + 1 ) = 1 ) |
| 17 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 18 | 1cnd | |- ( N e. NN0 -> 1 e. CC ) |
|
| 19 | 17 18 | npcand | |- ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) |
| 20 | 19 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( N - 1 ) + 1 ) = N ) |
| 21 | 16 20 | oveq12d | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
| 22 | 21 | prodeq1d | |- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( A + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) ( A + ( k - 1 ) ) ) |
| 23 | 1 14 22 | 3eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 1 ... N ) ( A + ( k - 1 ) ) ) |