This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of constant terms ( k is not free in B ). (Contributed by Scott Fenton, 12-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fprodconst | |- ( ( A e. Fin /\ B e. CC ) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp0 | |- ( B e. CC -> ( B ^ 0 ) = 1 ) |
|
| 2 | 1 | eqcomd | |- ( B e. CC -> 1 = ( B ^ 0 ) ) |
| 3 | prodeq1 | |- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
|
| 4 | prod0 | |- prod_ k e. (/) B = 1 |
|
| 5 | 3 4 | eqtrdi | |- ( A = (/) -> prod_ k e. A B = 1 ) |
| 6 | fveq2 | |- ( A = (/) -> ( # ` A ) = ( # ` (/) ) ) |
|
| 7 | hash0 | |- ( # ` (/) ) = 0 |
|
| 8 | 6 7 | eqtrdi | |- ( A = (/) -> ( # ` A ) = 0 ) |
| 9 | 8 | oveq2d | |- ( A = (/) -> ( B ^ ( # ` A ) ) = ( B ^ 0 ) ) |
| 10 | 5 9 | eqeq12d | |- ( A = (/) -> ( prod_ k e. A B = ( B ^ ( # ` A ) ) <-> 1 = ( B ^ 0 ) ) ) |
| 11 | 2 10 | syl5ibrcom | |- ( B e. CC -> ( A = (/) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) ) |
| 12 | 11 | adantl | |- ( ( A e. Fin /\ B e. CC ) -> ( A = (/) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) ) |
| 13 | eqidd | |- ( k = ( f ` n ) -> B = B ) |
|
| 14 | simprl | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 15 | simprr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 16 | simpllr | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
|
| 17 | simpllr | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> B e. CC ) |
|
| 18 | elfznn | |- ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) |
|
| 19 | 18 | adantl | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> n e. NN ) |
| 20 | fvconst2g | |- ( ( B e. CC /\ n e. NN ) -> ( ( NN X. { B } ) ` n ) = B ) |
|
| 21 | 17 19 20 | syl2anc | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { B } ) ` n ) = B ) |
| 22 | 13 14 15 16 21 | fprod | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B = ( seq 1 ( x. , ( NN X. { B } ) ) ` ( # ` A ) ) ) |
| 23 | expnnval | |- ( ( B e. CC /\ ( # ` A ) e. NN ) -> ( B ^ ( # ` A ) ) = ( seq 1 ( x. , ( NN X. { B } ) ) ` ( # ` A ) ) ) |
|
| 24 | 23 | ad2ant2lr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( B ^ ( # ` A ) ) = ( seq 1 ( x. , ( NN X. { B } ) ) ` ( # ` A ) ) ) |
| 25 | 22 24 | eqtr4d | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) |
| 26 | 25 | expr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) ) |
| 27 | 26 | exlimdv | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) ) |
| 28 | 27 | expimpd | |- ( ( A e. Fin /\ B e. CC ) -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) ) |
| 29 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 30 | 29 | adantr | |- ( ( A e. Fin /\ B e. CC ) -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 31 | 12 28 30 | mpjaod | |- ( ( A e. Fin /\ B e. CC ) -> prod_ k e. A B = ( B ^ ( # ` A ) ) ) |