This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefallfac | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 FallFac 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝑋 ∈ ℂ → - 𝑋 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → - 𝑋 ∈ ℂ ) |
| 3 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
| 4 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 6 | 5 | nn0cnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 7 | subcl | ⊢ ( ( - 𝑋 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℂ ) → ( - 𝑋 − ( 𝑘 − 1 ) ) ∈ ℂ ) | |
| 8 | 2 6 7 | syl2an | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 𝑋 − ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 9 | 8 | mulm1d | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 1 · ( - 𝑋 − ( 𝑘 − 1 ) ) ) = - ( - 𝑋 − ( 𝑘 − 1 ) ) ) |
| 10 | simpll | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ ℂ ) | |
| 11 | 6 | adantl | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 12 | 10 11 | negdi2d | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → - ( 𝑋 + ( 𝑘 − 1 ) ) = ( - 𝑋 − ( 𝑘 − 1 ) ) ) |
| 13 | 12 | negeqd | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → - - ( 𝑋 + ( 𝑘 − 1 ) ) = - ( - 𝑋 − ( 𝑘 − 1 ) ) ) |
| 14 | simpl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑋 ∈ ℂ ) | |
| 15 | addcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℂ ) → ( 𝑋 + ( 𝑘 − 1 ) ) ∈ ℂ ) | |
| 16 | 14 6 15 | syl2an | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑋 + ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 17 | 16 | negnegd | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → - - ( 𝑋 + ( 𝑘 − 1 ) ) = ( 𝑋 + ( 𝑘 − 1 ) ) ) |
| 18 | 9 13 17 | 3eqtr2rd | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑋 + ( 𝑘 − 1 ) ) = ( - 1 · ( - 𝑋 − ( 𝑘 − 1 ) ) ) ) |
| 19 | 18 | prodeq2dv | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑋 + ( 𝑘 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 1 · ( - 𝑋 − ( 𝑘 − 1 ) ) ) ) |
| 20 | risefacval2 | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 RiseFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑋 + ( 𝑘 − 1 ) ) ) | |
| 21 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 22 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 23 | fprodconst | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ - 1 ∈ ℂ ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 = ( - 1 ↑ ( ♯ ‘ ( 1 ... 𝑁 ) ) ) ) | |
| 24 | 21 22 23 | mp2an | ⊢ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 = ( - 1 ↑ ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
| 25 | hashfz1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ ( ♯ ‘ ( 1 ... 𝑁 ) ) ) = ( - 1 ↑ 𝑁 ) ) |
| 27 | 24 26 | eqtr2id | ⊢ ( 𝑁 ∈ ℕ0 → ( - 1 ↑ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 ) |
| 28 | 27 | adantl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 ) |
| 29 | fallfacval2 | ⊢ ( ( - 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 𝑋 − ( 𝑘 − 1 ) ) ) | |
| 30 | 1 29 | sylan | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 𝑋 FallFac 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 𝑋 − ( 𝑘 − 1 ) ) ) |
| 31 | 28 30 | oveq12d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 FallFac 𝑁 ) ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 · ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 𝑋 − ( 𝑘 − 1 ) ) ) ) |
| 32 | fzfid | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 33 | 22 | a1i | ⊢ ( ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → - 1 ∈ ℂ ) |
| 34 | 32 33 8 | fprodmul | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 1 · ( - 𝑋 − ( 𝑘 − 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... 𝑁 ) - 1 · ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 𝑋 − ( 𝑘 − 1 ) ) ) ) |
| 35 | 31 34 | eqtr4d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 FallFac 𝑁 ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 1 · ( - 𝑋 − ( 𝑘 − 1 ) ) ) ) |
| 36 | 19 20 35 | 3eqtr4d | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 𝑋 FallFac 𝑁 ) ) ) |