This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallrisefac | |- ( ( X e. CC /\ N e. NN0 ) -> ( X FallFac N ) = ( ( -u 1 ^ N ) x. ( -u X RiseFac N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 2 | 1 | 2timesd | |- ( N e. NN0 -> ( 2 x. N ) = ( N + N ) ) |
| 3 | 2 | oveq2d | |- ( N e. NN0 -> ( -u 1 ^ ( 2 x. N ) ) = ( -u 1 ^ ( N + N ) ) ) |
| 4 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 5 | m1expeven | |- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
|
| 6 | 4 5 | syl | |- ( N e. NN0 -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | expadd | |- ( ( -u 1 e. CC /\ N e. NN0 /\ N e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
|
| 9 | 7 8 | mp3an1 | |- ( ( N e. NN0 /\ N e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 10 | 9 | anidms | |- ( N e. NN0 -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 11 | 3 6 10 | 3eqtr3rd | |- ( N e. NN0 -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 12 | 11 | adantl | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 13 | negneg | |- ( X e. CC -> -u -u X = X ) |
|
| 14 | 13 | adantr | |- ( ( X e. CC /\ N e. NN0 ) -> -u -u X = X ) |
| 15 | 14 | oveq1d | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u -u X FallFac N ) = ( X FallFac N ) ) |
| 16 | 12 15 | oveq12d | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( -u -u X FallFac N ) ) = ( 1 x. ( X FallFac N ) ) ) |
| 17 | expcl | |- ( ( -u 1 e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
|
| 18 | 7 17 | mpan | |- ( N e. NN0 -> ( -u 1 ^ N ) e. CC ) |
| 19 | 18 | adantl | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
| 20 | negcl | |- ( X e. CC -> -u X e. CC ) |
|
| 21 | 20 | negcld | |- ( X e. CC -> -u -u X e. CC ) |
| 22 | fallfaccl | |- ( ( -u -u X e. CC /\ N e. NN0 ) -> ( -u -u X FallFac N ) e. CC ) |
|
| 23 | 21 22 | sylan | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u -u X FallFac N ) e. CC ) |
| 24 | 19 19 23 | mulassd | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( -u -u X FallFac N ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( -u -u X FallFac N ) ) ) ) |
| 25 | fallfaccl | |- ( ( X e. CC /\ N e. NN0 ) -> ( X FallFac N ) e. CC ) |
|
| 26 | 25 | mullidd | |- ( ( X e. CC /\ N e. NN0 ) -> ( 1 x. ( X FallFac N ) ) = ( X FallFac N ) ) |
| 27 | 16 24 26 | 3eqtr3rd | |- ( ( X e. CC /\ N e. NN0 ) -> ( X FallFac N ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( -u -u X FallFac N ) ) ) ) |
| 28 | risefallfac | |- ( ( -u X e. CC /\ N e. NN0 ) -> ( -u X RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u -u X FallFac N ) ) ) |
|
| 29 | 20 28 | sylan | |- ( ( X e. CC /\ N e. NN0 ) -> ( -u X RiseFac N ) = ( ( -u 1 ^ N ) x. ( -u -u X FallFac N ) ) ) |
| 30 | 29 | oveq2d | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u X RiseFac N ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( -u -u X FallFac N ) ) ) ) |
| 31 | 27 30 | eqtr4d | |- ( ( X e. CC /\ N e. NN0 ) -> ( X FallFac N ) = ( ( -u 1 ^ N ) x. ( -u X RiseFac N ) ) ) |