This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodmul.1 | |- ( ph -> A e. Fin ) |
|
| fprodmul.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprodmul.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
||
| Assertion | fprodmul | |- ( ph -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodmul.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fprodmul.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fprodmul.3 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
|
| 4 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 5 | prod0 | |- prod_ k e. (/) B = 1 |
|
| 6 | prod0 | |- prod_ k e. (/) C = 1 |
|
| 7 | 5 6 | oveq12i | |- ( prod_ k e. (/) B x. prod_ k e. (/) C ) = ( 1 x. 1 ) |
| 8 | prod0 | |- prod_ k e. (/) ( B x. C ) = 1 |
|
| 9 | 4 7 8 | 3eqtr4ri | |- prod_ k e. (/) ( B x. C ) = ( prod_ k e. (/) B x. prod_ k e. (/) C ) |
| 10 | prodeq1 | |- ( A = (/) -> prod_ k e. A ( B x. C ) = prod_ k e. (/) ( B x. C ) ) |
|
| 11 | prodeq1 | |- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
|
| 12 | prodeq1 | |- ( A = (/) -> prod_ k e. A C = prod_ k e. (/) C ) |
|
| 13 | 11 12 | oveq12d | |- ( A = (/) -> ( prod_ k e. A B x. prod_ k e. A C ) = ( prod_ k e. (/) B x. prod_ k e. (/) C ) ) |
| 14 | 9 10 13 | 3eqtr4a | |- ( A = (/) -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) |
| 15 | 14 | a1i | |- ( ph -> ( A = (/) -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) ) |
| 16 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 17 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 18 | 16 17 | eleqtrdi | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 19 | 2 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 21 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 22 | 21 | ad2antll | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 23 | fco | |- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 25 | 24 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) e. CC ) |
| 26 | 3 | fmpttd | |- ( ph -> ( k e. A |-> C ) : A --> CC ) |
| 27 | 26 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> C ) : A --> CC ) |
| 28 | fco | |- ( ( ( k e. A |-> C ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> C ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 29 | 27 22 28 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> C ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 30 | 29 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) e. CC ) |
| 31 | 22 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( f ` n ) e. A ) |
| 32 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 33 | 2 3 | mulcld | |- ( ( ph /\ k e. A ) -> ( B x. C ) e. CC ) |
| 34 | eqid | |- ( k e. A |-> ( B x. C ) ) = ( k e. A |-> ( B x. C ) ) |
|
| 35 | 34 | fvmpt2 | |- ( ( k e. A /\ ( B x. C ) e. CC ) -> ( ( k e. A |-> ( B x. C ) ) ` k ) = ( B x. C ) ) |
| 36 | 32 33 35 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( B x. C ) ) ` k ) = ( B x. C ) ) |
| 37 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 38 | 37 | fvmpt2 | |- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 39 | 32 2 38 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 40 | eqid | |- ( k e. A |-> C ) = ( k e. A |-> C ) |
|
| 41 | 40 | fvmpt2 | |- ( ( k e. A /\ C e. CC ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 42 | 32 3 41 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> C ) ` k ) = C ) |
| 43 | 39 42 | oveq12d | |- ( ( ph /\ k e. A ) -> ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) = ( B x. C ) ) |
| 44 | 36 43 | eqtr4d | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) ) |
| 45 | 44 | ralrimiva | |- ( ph -> A. k e. A ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) ) |
| 46 | 45 | ad2antrr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) ) |
| 47 | nffvmpt1 | |- F/_ k ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) |
|
| 48 | nffvmpt1 | |- F/_ k ( ( k e. A |-> B ) ` ( f ` n ) ) |
|
| 49 | nfcv | |- F/_ k x. |
|
| 50 | nffvmpt1 | |- F/_ k ( ( k e. A |-> C ) ` ( f ` n ) ) |
|
| 51 | 48 49 50 | nfov | |- F/_ k ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 52 | 47 51 | nfeq | |- F/ k ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 53 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) ) |
|
| 54 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> B ) ` k ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 55 | fveq2 | |- ( k = ( f ` n ) -> ( ( k e. A |-> C ) ` k ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 56 | 54 55 | oveq12d | |- ( k = ( f ` n ) -> ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 57 | 53 56 | eqeq12d | |- ( k = ( f ` n ) -> ( ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) <-> ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) ) |
| 58 | 52 57 | rspc | |- ( ( f ` n ) e. A -> ( A. k e. A ( ( k e. A |-> ( B x. C ) ) ` k ) = ( ( ( k e. A |-> B ) ` k ) x. ( ( k e. A |-> C ) ` k ) ) -> ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) ) |
| 59 | 31 46 58 | sylc | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 60 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B x. C ) ) o. f ) ` n ) = ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) ) |
|
| 61 | 22 60 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B x. C ) ) o. f ) ` n ) = ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) ) |
| 62 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 63 | 22 62 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
| 64 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 65 | 22 64 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> C ) o. f ) ` n ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
| 66 | 63 65 | oveq12d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( ( k e. A |-> B ) o. f ) ` n ) x. ( ( ( k e. A |-> C ) o. f ) ` n ) ) = ( ( ( k e. A |-> B ) ` ( f ` n ) ) x. ( ( k e. A |-> C ) ` ( f ` n ) ) ) ) |
| 67 | 59 61 66 | 3eqtr4d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( B x. C ) ) o. f ) ` n ) = ( ( ( ( k e. A |-> B ) o. f ) ` n ) x. ( ( ( k e. A |-> C ) o. f ) ` n ) ) ) |
| 68 | 18 25 30 67 | prodfmul | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( x. , ( ( k e. A |-> ( B x. C ) ) o. f ) ) ` ( # ` A ) ) = ( ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) x. ( seq 1 ( x. , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) ) |
| 69 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> ( B x. C ) ) ` m ) = ( ( k e. A |-> ( B x. C ) ) ` ( f ` n ) ) ) |
|
| 70 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 71 | 33 | fmpttd | |- ( ph -> ( k e. A |-> ( B x. C ) ) : A --> CC ) |
| 72 | 71 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( B x. C ) ) : A --> CC ) |
| 73 | 72 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( B x. C ) ) ` m ) e. CC ) |
| 74 | 69 16 70 73 61 | fprod | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> ( B x. C ) ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> ( B x. C ) ) o. f ) ) ` ( # ` A ) ) ) |
| 75 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
|
| 76 | 20 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 77 | 75 16 70 76 63 | fprod | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 78 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. A |-> C ) ` m ) = ( ( k e. A |-> C ) ` ( f ` n ) ) ) |
|
| 79 | 27 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> C ) ` m ) e. CC ) |
| 80 | 78 16 70 79 65 | fprod | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) |
| 81 | 77 80 | oveq12d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( prod_ m e. A ( ( k e. A |-> B ) ` m ) x. prod_ m e. A ( ( k e. A |-> C ) ` m ) ) = ( ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) x. ( seq 1 ( x. , ( ( k e. A |-> C ) o. f ) ) ` ( # ` A ) ) ) ) |
| 82 | 68 74 81 | 3eqtr4d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> ( B x. C ) ) ` m ) = ( prod_ m e. A ( ( k e. A |-> B ) ` m ) x. prod_ m e. A ( ( k e. A |-> C ) ` m ) ) ) |
| 83 | prodfc | |- prod_ m e. A ( ( k e. A |-> ( B x. C ) ) ` m ) = prod_ k e. A ( B x. C ) |
|
| 84 | prodfc | |- prod_ m e. A ( ( k e. A |-> B ) ` m ) = prod_ k e. A B |
|
| 85 | prodfc | |- prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ k e. A C |
|
| 86 | 84 85 | oveq12i | |- ( prod_ m e. A ( ( k e. A |-> B ) ` m ) x. prod_ m e. A ( ( k e. A |-> C ) ` m ) ) = ( prod_ k e. A B x. prod_ k e. A C ) |
| 87 | 82 83 86 | 3eqtr3g | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) |
| 88 | 87 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) ) |
| 89 | 88 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) ) |
| 90 | 89 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) ) |
| 91 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 92 | 1 91 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 93 | 15 90 92 | mpjaod | |- ( ph -> prod_ k e. A ( B x. C ) = ( prod_ k e. A B x. prod_ k e. A C ) ) |